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Preface 

Origin of This Text 

This text has evolved from mathematics courses in the Master of Science in 
Computational Finance (MSCF) program at Carnegie Mellon University. The 
content of this book has been used successfully with students whose math-
ematics background consists of calculus and calculus-based probability. The 
text gives precise statements of results, plausibility arguments, and even some 
proofs, but more importantly, intuitive explanations developed and refined 
through classroom experience with this material are provided. Exercises con-
clude every chapter. Some of these extend the theory and others are drawn 
from practical problems in quantitative finance. 

The first three chapters of Volume I have been used in a half-semester 
course in the MSCF program. The full Volume I has been used in a full-
semester course in the Carnegie Mellon Bachelor's program in Computational 
Finance. Volume I I  was developed to support three half-semester courses in 
the MSCF program. 

Dedication 

Since its inception in 1994, the Carnegie Mellon Master's program in Compu-
tational Finance has graduated hundreds of students. These people, who have 
come from a variety of educational and professional backgrounds, have been 
a joy to teach. They have been eager to learn, asking questions that stimu-
lated thinking, working hard to understand the material both theoretically 
and practically, and often requesting the inclusion of additional topics. Many 
came from the finance industry, and were gracious in sharing their knowledge 
in ways that enhanced the classroom experience for all. 

This text and my own store of knowledge have benefited greatly from 
interactions with the MSCF students, and I continue to learn from the MSCF 
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alumni. I take this opportunity to express gratitude to these students and 
former students by dedicating this work to them. 
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Introduction 

Background 

By awarding Harry Markowitz, William Sharpe, and Merton Miller the 1990 
Nobel Prize in F,conomics, the Nobel Prize Committee brought to worldwide 
attention the fact that the previous forty years had seen the emergence of 
a new scientific discipline, the "theory of finance." This theory attempts to 
understand how financial markets work, how to make them more efficient, and 
how they should be regulated. It explains and enhances the important role 
these markets play in capital allocation and risk reduction to facilitate ~ 
nomic activity. Without losing its application to practical aspects of trading 
and regulation, the theory of finance has become incre&-1ingly mathematical, 
to the point that problems in finance are now driving research in mathematics. 

Harry Markowitz's 1952 Ph.D. thesis Portfolio Selection laid the ground
work for the mathematical theory of finance. Markowitz developed a notion 
of mean return and covariances for common stocks that allowed him to quan
tify the concept of "diversification" in a market. He showed how to compute 
the mean return and variance for a given portfolio and argued that investors 
should hold only those portfolios whose variance is minimal among all port£~ 
lios with a given mean return. Although the language of finance now involves 
stochastic (Ito) calculus, management of risk in a quantifiable manner is the 
underlying theme of the modern theory and practice of quantitative finance. 

In 1969, Robert Merton introduced stochastic calculus into the study of 
finance. Merton was motivated by the desire to understand how prices are 
set in financial markets, which is the classical economics question of "equi
librium," and in later papers he used the machinery of stochastic calculus to 
begin investigation of this issue. 

At the same time as Merton's work and with Merton's assistance, Fis
cher Black and Myron Scholes were developing their celebrated option pricing 
formula. This work won the 1997 Nobel Prize in Economics. It provided a 
satisfying solution to an important practical problem, that of finding a fair 
price for a European call option (i.e., the right to buy one share of a given 
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stock at a specified price and time). In the period 1979-1983, Harrison, Kreps, 
and Pliska used the general theory of continuous-time stochastic processes to 
put the Black-Scholes option-pricing formula on a solid theoretical basis, and, 
as a result, showed how to price numerous other "derivative" securities. 

Many of the theoretical developments in finance have found immediate 
application in financial markets. To understand how they are applied, we 
digress for a moment on the role of financial institutions. A principal function 
of a nation's financial institutions is to act as a risk-reducing intermediary 
among customers engaged in production. For example, the insurance industry 
pools premiums of many customers and must pay off only the few who actually 
incur losses. But risk arises in situations for which pooled-premium insurance 
is unavailable. For instance, as a hedge against higher fuel costs, an airline 
may want to buy a security whose value will rise if oil prices rise. But who 
wants to sell such a security? The role of a financial institution is to design 
such a security, determine a "fair" price for it, and sell it to airlines. The 
security thus sold is usually "derivative" (i.e., its value is based on the value 
of other, identified securities). "Fair" in this context means that the financial 
institution earns just enough from selling the security to enable it to trade 
in other securities whose relation with oil prices is such that, if oil prices do 
indeed rise, the firm can pay off its increased obligation to the airlines. An 
"efficient" market is one in which risk-hedging securities are widely available 
at "fair" prices. 

The Black-Scholes option pricing formula provided, for the first time, a 
theoretical method of fairly pricing a risk-hedging security. If an investment 
bank offers a derivative security at a price that is higher than "fair," it may be 
underbid. If it offers the security at less than the "fair" price, it runs the risk of 
substantial loss. This makes the bank reluctant to offer many of the derivative 
securities that would contribute to market efficiency. In particular, the bank 
only wants to offer derivative securities whose "fair" price can be determined 
in advance. Furthermore, if the bank sells such a security, it must then address 
the hedging problem: how should it manage the risk associated with its new 
position? The mathematical theory growing out of the Black-Scholes option 
pricing formula provides solutions for both the pricing and hedging problems. 
It thus has enabled the creation of a host of specialized derivative securities. 
This theory is the subject of this text. 

Relationship between Volumes I and II 

Volume II treats the continuous-time theory of stochastic calculus within the 
context of finance applications. The presentation of this theory is the raison 
d'etre of this work. Volume II includes a self-contained treatment of the prob
ability theory needed for stochastic calculus, including Brownian motion and 
its properties. 
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Volume I presents many of the same finance applications, but within the 
simpler context of the discrete-time binomial model. It prepares the reader 
for Volume II by treating several fundamental concepts, including martin
gales, Markov processes, change of measure and risk-neutral pricing in this 
less technical setting. However, Volume II has a self-contained treatment of 
these topics, and strictly speaking, it is not necessary to read Volume I before 
reading Volume II. It is helpful in that the difficult concepts of Volume II are 
first seen in a simpler context in Volume I. 

In the Carnegie Mellon Master's program in Computational Finance, the 
course based on Volume I is a prerequisite for the courses based on Volume 
II. However, graduate students in computer science, finance, mathematics, 
physics and statistics frequently take the courses based on Volume II without 
first taking the course based on Volume I. 

The reader who begins with Volume II may use Volume I as a reference. As 
several concepts are presented in Volume II, reference is made to the analogous 
concepts in Volume I. The reader can at that point choose to read only Volume 
II or to refer to Volume I for a discussion of the concept at hand in a more 
transparent setting. 

Summary of Volume I 

Volume I presents the binomial asset pricing model. Although this model is 
interesting in its own right, and is often the paradigm of practice, here it is 
used primarily as a vehicle for introducing in a simple setting the concepts 
needed for the continuous-time theory of Volume II. 

Chapter 1, The Binomial No-Arbitrage Pricing Model, presents the no
arbitrage method of option pricing in a binomial model. The mathematics is 
simple, but the profound concept of risk-neutral pricing introduced here is 
not. Chapter 2, Probability Theory on Coin Toss Space, formalizes the results 
of Chapter 1, using the notions of martingales and Markov processes. This 
chapter culminates with the risk-neutral pricing formula for European deriva
tive securities. The tools used to derive this formula are not really required for 
the derivation in the binomial model, but we need these concepts in Volume II 
and therefore develop them in the simpler discrete-time setting of Volume I. 
Chapter 3, State Prices, discusses the change of measure associated with risk
neutral pricing of European derivative securities, again as a warm-up exercise 
for change of measure in continuous-time models. An interesting application 
developed here is to solve the problem of optimal (in the sense of expected 
utility maximization) investment in a binomial model. The ideas of Chapters 
1 to 3 are essential to understanding the methodology of modern quantitative 
finance. They are developed again in Chapters 4 and 5 of Volume II. 

The remaining three chapters of Volume I treat more specialized con
cepts. Chapter 4, American Derivative Securities, considers derivative secu
rities whose owner can choose the exercise time. This topic is revisited in 
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a continuous-time context in Chapter 8 of Volume II. Chapter 5, Random 
Walk, explains the reflection principle for random walk. The analogous reflec
tion principle for Brownian motion plays a prominent role in the derivation of 
pricing formulas for exotic options in Chapter 7 of Volume II. Finally, Chap
ter 6, Interest-Rate-Dependent Assets, considers models with random interest 
rates, examining the difference between forward and futures prices and intr~ 
ducing the concept of a forward measure. Forward and futures prices reappear 
at the end of Chapter 5 of Volume II. Forward measures for continuous-time 
models are developed in Chapter 9 of Volume II and used to create forward 
LIBOR models for interest rate movements in Chapter 10 of Volume II. 

Summary of Volume II 

Chapter 1, General Probability Theory, and Chapter 2, Information and Con
ditioning, of Volume II lay the measure-theoretic foundation for probability 
theory required for a treatment of continuous-time models. Chapter 1 presents 
probability spaces, Lebesgue integrals, and change of measure. Independence, 
conditional expectations, and properties of conditional expectations are intr~ 
duced in Chapter 2. These chapters are used extensively throughout the text, 
but some readers, especially those with exposure to probability theory, may 
choose to skip this material at the outset, referring to it as needed. 

Chapter 3, Brownian Motion, introduces Brownian motion and its proper
ties. The most important of these for stochastic calculus is quadratic variation, 
presented in Section 3.4. All of this material is needed in order to proceed, 
except Sections 3.6 and 3. 7. which are used only in Chapter 7, Exotic Options 
and Chapter 8, Early Exercise. 

The core of Volume II is Chapter 4, Stochastic Calculus. Here the Ito 
integral is constructed and Ito's formula (called the lto-Doeblin formula in 
this text) is developed. Several consequences of the lto-Doeblin formula are 
worked out. One of these is the characterization of Brownian motion in terms 
of its quadratic variation (Levy's theorem) and another is the Black-Scholes 
equation for a European call price (called the Black-Scholes-Merton equation 
in this text). The only material which the reader may omit is Section 4. 7, 
Brownian Bridge. This topic is included because of its importance in Monte 
Carlo simulation, but it is not used elsewhere in the text. 

Chapter 5, Risk-Neutral Pricing, states and proves Girsanov's Theorem, 
which underlies change of measure. This permits a systematic treatment of 
risk-neutral pricing and the Fundamental Theorems of Asset Pricing (Section 
5.4). Section 5.5, Dividend-Paying Stocks, is not used elsewhere in the text. 
Section 5.6, Forwards and Futures, appears later in Section 9.4 and in some 
exercises. 

Chapter 6~ Connections with Partial Differential Equations, develops the 
connection between stochastic calculus and partial differential equations. This 
is used frequently in later chapters. 
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With the exceptions noted above, the material in Chapters 1-6 is fun
damental for quantitative finance is essential for reading the later chapters. 
After Chapter 6, the reader has choices. 

Chapter 7, Exotic Options, is not used in subsequent chapters, nor is Chap
ter 8, Early Exercise. Chapter 9, Change of Numemire, plays an important 
role in Section 10.4, Fon1Jard LIBOR model, but is not otherwise used. Chapter 
10, Term Strocture Models, and Chapter 11, Introduction to Jump Processes, 
are not used elsewhere in the text. 
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1 

The Binomial No-Arbitrage Pricing Model 

1.1 One-Period Binomial Model 

The binomial asset-pricing model provides a powerful tool to understand ar
bitmge pricing theory and probability. In this chapter, we introduce this tool 
for the first purpose, and we take up the second in Chapter 2. In this section, 
we consider the simplest binomial model, the one with only one period. This 
is generalized to the more realistic multiperiod binomial model in the next 
section. 

For the general one-period model of Figure 1.1.1, we call the beginning of 
the period time zero and the end of the period time one. At time zero, we have 
a stock whose price per share we denote by So, a positive quantity known at 
time zero. At time one, the price per share of this stock will be one of two 
positive values, which we denote S1(H) and S1(T), the H and T standing 
for head and tail, respectively. Thus, we are imagining that a coin is tossed, 
and the outcome of the coin toss determines the price at time one. We do not 
assume this coin is fair (i.e., the probability of head need not be one-half). 
We assume only that the probability of head, which we call p, is positive, and 
the probability of tail, which is q = 1 - p, is also positive. 

/ 
S1(H) = uSo 

So 

~ S1(T) = dSo 

Fig. 1.1.1. General one-period binomial model. 
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2 1 The Binomial No-Arbitrage Pricing Model 

The outcome of the coin toss, and hence the value which the stock price 
will take at time one, is known at time one but not at time zero. We shall 
refer to any quantity not known at time zero as random because it depends 
on the random experiment of tossing a coin. 

We introduce the two positive numbers 

S1(H) 
u = So ' 

We assume that d < u: if we instead had d > u, we may achieve d < u by 
relabeling the sides of our coin. If d = u, the stock price at time one is not 
really random and the model is uninteresting. We refer to u as the up factor 
and d as the down factor. It is intuitively helpful to think of u as greater than 
one and to think of d as less than one, and hence the names up factor and 
down factor, but the mathematics we develop here does not require that these 
inequalities hold. 

We introduce also an interest rate r. One dollar invested in the money 
market at time zero will yield 1 + r dollars at time one. Conversely, one dollar 
borrowed from the money market at time zero will result in a debt of 1 + r 
at time one. In particular, the interest rate for borrowing is the same as the 
interest rate for investing. It is almost always true that r > 0, and this is 
the case to keep in mind. However, the mathematics we develop requires only 
that r > -1. 

An essential feature of an efficient market is that if a trading strategy can 
turn nothing into something, then it must also run the risk of loss. Otherwise, 
there would be an arbitmge. More specifically, we define arbitrage as a trading 
strategy that begins with no money. has zero probability of losing money, 
and has a positive probability of making money. A mathematical model that 
admits arbitrage cannot be used for analysis. Wealth can be generated from 
nothing in such a model, and the questions one would want the model to 
illuminate are provided with paradoxical answers by the model. Real markets 
sometimes exhibit arbitrage. but this is necessarily fleeting; as soon as someone 
discovers it, trading takes places that removes it. 

In the one-period binomial model. to rule out arbitrage we must assume 

0 < d < 1 + r < u. (1.1.2) 

The inequality d > 0 follows from the positivity of the stock prices and was 
already assumed. The two other inequalities in ( 1.1.2) follow from the absence 
of arbitrage, as we now explain. If d > 1 + r, one could begin with zero wealth 
and at time zero borrow from the money market in order to buy stock. Even 
in the worst case of a tail on the coin toss, the stock at time one will be worth 
enough to pay off the money market debt and has a positive probability of 
being worth strictly more since u > d > 1 + r. This provides an arbitrage. 
On the other hand, if u < 1 + r, one could sell the stock short and invest the 
proceeds in the money market. Even in the best case for the stock, the cost of 
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1.1 One-Period Binomial Model 3 

replacing it at time one will be less than or equal to the value of the money 
market investment, and since d < u < 1 + r, there is a positive probability 
that the cost of replacing the stock will be strictly less than the value of the 
money market investment. This again provides an arbitrage. 

We have argued in the preceding paragraph that if there is to be no arbi
trage in the market with the stock and the money market account, then we 
must have (1.1.2). The converse of this is also true. If (1.1.2) holds, then there 
is no arbitrage. See Exercise 1.1. 

It is common to have d = t, and this will be the case in many of our 
examples. However, for the binomial asset-pricing model to make sense, we 
only need to assume (1.1.2). 

Of course, stock price movements are much more complicated than indi
cated by the binomial asset-pricing model. We consider this simple model for 
three reasons. First of all, within this model, the concept of arbitrage pric
ing and its relation to risk-neutral pricing is clearly illuminated. Secondly, 
the model is . used in practice because, with a sufficient number of periods, 
it provides a reasonably good, computationally tractable approximation to 
continuous-time models. Finally, within the binomial asset-pricing model, we 
can develop the theory of conditional expectations and martingales, which lies 
at the heart of continuous-time models. 

Let us now consider a European call option, which confers on its owner 
the right but not the obligation to buy one share of the stock at time one for 
the strike price K. The interesting case, which we shall assume here, is that 
S1 (T) < K < 81 (H). If we get a tail on the toss, the option expires worthless. 
If we get a head on the coin toss, the option can be exercised and yields a 
profit of S1(H)-K. We summarize this situation by saying that the option at 
time one is worth ( S1 - K) +, where the notation ( • • • ) + indicates that we take 
the maximum of the expression in parentheses and zero. Here we follow the 
usual custom in probability of omitting the argument of the random variable 
S1. The fundamental question of option pricing is how much the option is 
worth at time zero before we know whether the coin toss results in head or 
tail. 

The arbitmge pricing theory approach to the option-pricing problem is to 
replicate the option by trading in the stock and money markets. We illustrate 
this with an example, and then we return to the general one-period binomial 
model. 

Example 1.1.1. For the particular one-period model of Figure 1.1.2, let S(O) = 
4, u = 2, d = ½, and r = ¼-Then S1(H) = 8 and S1(T) = 2. Suppose the 
strike price of the European call option is K = 5. Suppose further that we 
begin with an initial wealth Xo = 1.20 and buy .c:10 = ½ shares of stock at 
time zero. Since stock costs 4 per share at time zero, we must use our initial 
wealth Xo = 1.20 and borrow an additional 0.80 to do this. This leaves us 
with a cash position Xo - LloSo = -0.80 (i.e., a debt of 0.80 to the money 
market). At time one, our cash position will be (1 + r)(X 0 - .10 S0 ) = -1 
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/ 
S1(H) = 8 

So =4 

~ S1(T) = 2 

Fig. 1.1.2. Particular one-period binomial model. 

(i.e., we will have a debt of 1 to the money market). On the other hand, at 
time one we will have stock valued at either ½S1(H) = 4 or ½S1(T) = 1. In 
particular, if the coin toss results in a head, the value of our portfolio of stock 
and money market account at time one will be 

if the coin toss results in a tail, the value of our portfolio of stock and money 
market account at time one will be 

In either case, the value of the portfolio agrees with the value of the option 
at time one, which is either (S1(H) - 5)+ = 3 or (S1(T) - s)+ = 0. We have 
replicated the option by trading in the stock and money markets. 

The initial wealth 1.20 needed to set up the replicating portfolio described 
above is the no-arbitrage price of the option at time zero. If one could sell 
the option for more than this, say, for 1.21, then the seller could invest the 
excess 0.01 in the money market and use the remaining 1.20 to replicate the 
option. At time one, the seller would be able to pay off the option, regardless 
of how the coin tossing turned out, and still have the 0.0125 resulting from 
the money market investment of the excess 0.01. This is an arbitrage because 
the seller of the option needs no money initially, and without risk of loss has 
0.0125 at time one. On the other hand, if one could buy the option above 
for less than 1.20, say, for 1.19, then one should buy the option and set up 
the reverse of the replicating trading strategy described above. In particular, 
sell short one-half share of stock, which generates income 2. Use 1.19 to buy 
the option, put 0.80 in the money market, and in a separate money market 
account put the remaining 0.01. At time one, if there is a head, one needs 4 
to replace the half-share of stock. The option bought at time zero is worth 
3, and the 0.80 invested in the money market at time zero has grown to 1. 
At time one, if there is a tail, one needs 1 to replace the half-share of stock. 
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The option is worthless, but the 0.80 invested in the money market at time 
zero has grown to 1. In either case, the buyer of the option has a net zero 
position at time one, plus the separate money market account in which 0.01 
was invested at time zero. Again, there is an arbitrage. 

We have shown that in the market with the stock, the money market, and 
the option, there is an arbitrage unless the time-zero price of the option is 
1.20. If the time-zero price of the option is 1.20, then there is no arbitrage 
(see Exercise 1.2). □ 

The argument in the example above depends on several assumptions. The 
principal ones are: 

• shares of stock can be subdivided for sale or purchase, 
• the interest rate for investing is the same as the interest rate for borrowing, 
• the purchase price of stock is the same as the selling price (i.e., there is 

zero bid-ask spread), 
• at any time, the stock can take only two possible values in the next period. 

All these assumptions except the last also underlie the Black-Scholes-Merton 
option-pricing formula. The first of these assumptions is essentially satisfied 
in practice because option pricing and hedging (replication) typically involve 
lots of options. If we had considered 100 options rather than one option in 
Example 1.1.1, we would have hedged the short position by buying Llo = 50 
shares of stock rather than Ll0 = ½ of a share. The second assumption is close 
to being true for large institutions. The third assumption is not satisfied in 
practice. Sometimes the bid-ask spread can be ignored because not too much 
trading is taking place. In other situations, this departure of the model from 
reality becomes a serious issue. In the Black-Scholes-Merton model, the fourth 
assumption is replaced by the assumption that the stock price is a geometric 
Brownian motion. Empirical studies of stock price returns have consistently 
shown this not to be the case. Once again, the departure of the model from 
reality can be significant in some situations, but in other situations the model 
works remarkably well. We shall develop a modeling framework that extends 
far beyond the geometric Brownian motion assumption, a framework that 
includes many of the more sophisticated models that are not tied to this 
assumption. 

In the general one-period model, we define a derivative security to be a 
security that pays some amount V1(H} at time one if the coin toss results 
in head and pays a possibly different amount V1 (T) at time one if the coin 
toss results in tail. A European call option is a particular kind of derivative 
security. Another is the European put option, which pays off (K - Si)+ at 
time one, where K is a constant. A third is a forward contract, whose value 
at time one is S1 - K. 

To determine the price Vo at time zero for a derivative security, we replicate 
it as in Example 1.1.1. Suppose we begin with wealth X0 and buy Ll0 shares 
of stock at time zero, leaving us with a cash position X0 - LloS0 . The value 
of our portfolio of stock and money market account at time one is 
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X1 = Ll0S1 + (1 + r)(Xo - LloSo) = (1 + r)Xo + Llo(S1 - (1 + r)So). 

We want to choose Xo and Ll0 so that X1(H) = V1(H) and X1(T) = Vi(T). 
(Note here that V1 (H) and Vi (T) are given quantities, the amounts the deriva
tive security will pay off depending on the outcome of the coin tosses. At time 
zero, we know what the two possibilities V1 ( H) and V1 (T) are; we do not know 
which of these two possibilities will be realized.) Replication of the derivative 
security thus requires that 

Xo + .llo ( 1 : r S 1 ( H) - So) = 1 : r V, ( H), 

Xo + .llo ( 1 : r S, (T) - So) = 1 : r Vi (T). 

(1.1.3) 

(1.1.4) 

One way to solve these two equations in two unknowns is to multiply the first 
by a number p and the second by ij = 1 - p and then add them to get 

Xo + .:lo ( 1 : r (pS,(H) + ,jS,(T)I - So) = 1: r (pV,(H) + ,jV,(T)j. 

(1.1.5) 
If we choose p so that 

So = -1 
1 [pS1 (H) + qS1 (T)], 
+r 

(1.1.6) 

then the term multiplying Ll0 in (1.1.5) is zero, and we have the simple formula 
for Xo 

Xo = -1
1 [pV1(H) + qV1(T)J. 
+r 

We can solve for p directly from (1.1.6) in the form 

So= -1 l [puSo + (1- p)dSo) = 180 [(u - d)p + d]. 
+r +r 

This leads to the formulas 

_ l+r-d 
p=--

u-d ' 
_ u-1-r 
q=---. 

u-d 

(1.1.7) 

(1.1.8) 

We can solve for Ll0 by simply subtracting (1.1.4) from (1.1.3) to get the 
delta-hedging formula 

Llo = V1(H) - V1(T). 
81 (H) - S1 (T) 

(1.1.9) 

In conclusion, if an agent begins with wealth X0 given by (1.1.7) and at time 
zero buys Ll0 shares of stock, given by (1.1.9), then at time one, if the coin toss 
results in head, the agent will have a portfolio worth V1(H), and if the coin 
toss results in tail, the portfolio will be worth V1 (T). The agent has hedged a 
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short position in the derivative security. The derivative security that pays V1 
at time one should be priced at 

Vo= l l (pV1(H) + ijV1{T)] 
+r 

(1.1.10) 

at time zero. This price permits the seller to hedge the short position in the 
claim. This price does not introduce an arbitrage when the derivative security 
is added to the market comprising the stock and money market account; any 
other time-zero price would introduce an arbitrage. 

Although we have determined the no-arbitrage price of a derivative secu
rity by setting up a hedge for a short position in the security, one could just 
as well consider the hedge for a long position. An agent with a long position 
owns an asset having a certain value, and the agent may wish to set up a 
hedge to protect against loss of that value. This is how practitioners think 
about hedging. The number of shares of the underlying stock held by a long 
position hedge is the negative of the number determined by (1.1.9). Exercises 
1.6 and 1.7 consider this is more detail. 

The numbers p and ij given by (1.1.8) are both positive because of the 
no-arbitrage condition (1.1.2), and they sum to one. For this reason, we can 
regard them as probabilities of head and tail, respectively. They are not the 
actual probabilities, which we call p and q, but rather the so-called risk-neutral 
probabilities. Under the actual probabilities, the average rate of growth of the 
stock is typically strictly greater than the rate of growth of an investment in 
the money market; otherwise, no one would want to incur the risk associated 
with investing in the stock. Thus, p and q = 1 - p should satisfy 

1 
So< -1 -[pS1(H) + qS1(T)), 

+r 
whereas p and ij satisfy (1.1.6). If the average rate of growth of the stock were 
exactly the same as the rate of growth of the money market investment, then 
investors must be neutral about risk-they do not require compensation for 
assuming it, nor are they willing to pay extra for it. This is simply not the case, 
and hence p and ij cannot be the actual probabilities. They are only numbers 
that assist us in the solution of the two equations (1.1.3) and (1.1.4) in the 
two unknowns Xo and "10 • They assist us by making the term multiplying the 
unknown ilo in (1.1.5) drop out. In fact, because they are chosen to make the 
mean rate of growth of the stock appear to equal the rate of growth of the 
money market account, they make the mean rate of growth of any portfolio 
of stock and money market account appear to equal the rate of growth of the 
money market asset. If we want to construct a portfolio whose value at time 
one is V1 , then its value at time zero must be given by (1.1.7), so that its 
mean rate of growth under the risk-neutral probabilities is the rate of growth 
of the money market investment. 

The concluding equation (1.1.10) for the time-zero price V0 of the deriva
tive security V1 is called the risk-neutral pricing fonnula for the one-period 
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binomial model. One should not be concerned that the actual probabilities 
do not appear in this equation. We have constructed a hedge for a short po
sition in the derivative security, and this hedge works regardless of whether 
the stock goes up or down. The probabilities of the up and down moves are 
irrelevant. What matters is the size of the two possible moves ( the values of 
u and d). In the binomial model, the prices of derivative securities depend 
on the set of possible stock price paths but not on how probable these paths 
are. As we shall see in Chapters 4 and 5 of Volume II, the analogous fact for 
continuous-time models is that prices of derivative securities depend on the 
volatility of stock prices but not on their mean rates of growth. 

1.2 Multiperiod Binomial Model 

We now extend the ideas in Section 1.1 to multiple periods. We toss a coin 
repeatedly, and whenever we get a head the stock price moves "up" by the 
factor u, whereas whenever we get a tail, the stock price moves "down" by 
the factor d. In addition to this stock, there is a money market asset with a 
constant interest rate r. The only assumption we make on these parameters 
is the no-arbitrage condition {1.1.2). 

Fig. 1.2.1. General three-period model. 

We denote the initial stock price by S0 , which is positive. We denote the 
price at time one by S1 (H) = uS 0 if the first toss results in head and by 
S1 (T) = dS0 if the first toss results in tail. After the second toss, the price 
will be one of: 
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S2(HH) = uS1(H) = u2So, S2(HT) = dS1(H) = duSo, 

S2(TH) = uS1(T) = udSo, S2(TT) = dS1(T) = <PSo. 

After three tosses, there are eight possible coin sequences, although not all of 
them result in different stock prices at time 3. See Figure 1.2.1. 

Example 1.2.1. Consider the particular three-period model with So= 4, u = 
2, and d = ½-We have the binomial "tree" of possible stock prices shown in 
Figure 1.2.2. □ 

~ 83(TIT) = .50 

Fig. 1.2.2. A particular three-period model. 

Let us return to the general three-period binomial model of Figure 1.2.1 
and consider a European call that confers the right to buy one share of stock 
for K dollars at time two. After the discussion of this option, we extend the 
analysis to an arbitrary European derivative security t.hat expires at time 
N > 2. 

At expiration, the payoff of a call option with strike price K and expiration 
time two is l'2 = (S2 - K)+, where l'2 and S2 depend on the first and second 
coin tosses. We want to determine the n~arbitrage price for this option at time 
zero. Suppose an agent sells the option at time zero for Vo dollars, where Vo is 
still to be determined. She then buys Ll0 shares of stock, investing Vo - Ll0 S0 

dollars in the money market to finance this. (The quantity Vo - Ll0S0 will 
turn out to be negative, so the agent is actually borrowing LloSo - Vo dollars 
from the money market.) At time one, the agent has a portfolio (excluding 
the short position in the option) valued at 

X1 = LloS1 + (1 + r)(Vo - LloSo). (1.2.1) 
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Although we do not indicate it in the notation, S1 and therefore X 1 depend 
on the outcome of the first coin toss. Thus, there are really two equations 
implicit in (1.2.1): 

X1(H) = Ll0S1(H) + (1 + r)(Vo - LloSo), 

X1(T) = Ll0S1(T) + (1 + r)(Vo - LloSo)-

(1.2.2) 

(1.2.3) 

After the first coin toss, the agent has a portfolio valued at X 1 dollars and can 
readjust her hedge. Suppose she decides now to hold Ll1 shares of stock, where 
Ll1 is allowed to depend on the first coin toss because the agent knows the 
result of this toss at time one when she chooses Ll l · She invests the re1nainder 
of her wealth, X1 -Ll1S 1, in the money market. In the next period, her wealth 
will be given by the right-hand side of the following equation, and she wants 
it to be V2. Therefore, she wants to have 

(1.2.4) 

Although we do not indicate it in the notation, S2 and V2 depend on the 
outcomes of the first two coin tosses. Considering all four possible outcomes, 
we can write (1.2.4) as four equations: 

V2(HH) = Ll1(H)S2(HH) + (1 + r)(X1(H) - Ll1(H)S1(H)), (1.2.5) 

V2(HT) = Lli(H)S2(HT) + (1 + r)(Xi(H) - Ll1(H)S1(H)), (1.2.6) 

½(TH)= Ll1(T)S2(TH) + (1 + r)(X1(T) - Ll1(T)S1(T)), (1.2.7) 

V2(TT) = Lli(T)S2(TT) + (1 + r)(X i(T) - Ll1 (T)S1 (T)). (1.2.8) 

We now have six equations, the two represented by ( 1.2.1) and the four rep
resented by (1.2.4), in the six unknowns V0 , Ll0 , Ll1 (H), Ll1 (T), X 1 (H), and 
X1(T). 

To solve these equations, and thereby determine the no-arbitrage price V0 

at time zero of the option and the replicating portfolio Llo, Ll1 (H), and L'.11 (T), 
we begin with the last two equations, (1.2.7) and (1.2.8). Subtracting (1.2.8) 
from (1.2.7) and solving for Ll1(T), we obtain the delta-hedging formula 

(1.2.9) 

and substituting this into either (1.2.7) or (1.2.8), we can solve for 

X1(T) = -1 
1 [pV2(TH) + qV2(TT)], 
+r 

(1.2.10) 

where p and ij are the risk-neutral probabilities given by (1.1.8). We can also 
obtain (1.2.10) by multiplying (1.2.7} by p and (1.2.8) by ij and adding them 
together. Since 
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this causes all the terms involving L1i (T) to drop out. Equation (1.2.10) gives 
the value the replicating portfolio should have at time one if the stock goes 
down between times zero and one. We define this quantity to be the price of 
the option at time one if the first coin toss results in tail, and we denote it by 
Vi(T). We have just shown that 

Vi(T) = l l (pV2(TH) + qV2(TT)J, 
+r 

(1.2.11) 

which is another instance of the risk-neutml pricing formula. This formula 
is analogous to formula (1.1.10) but postponed by one period. The first two 
equations, {l.2.5) and {l.2.6), lead in a similar way to the formulas 

(1.2.12) 

and Xt(H) = V1 (H), where V1 (H) is the price of the option at time one if 
the first toss results in head, defined by 

Vi(H) = l l (pV2(H H) + qV2(HT)]. 
+r 

(1.2.13) 

This is again analogous to formula (1.1.10), postponed by one period. Finally, 
we plug the values X 1 ( H) = V1 ( H) and X 1 (T) = Vi (T) into the two equations 
implicit in (1.2.1). The solution of these equations for Llo and Vo is the same 
as the solution of (1.1.3) and (1.1.4) and results again in (1.1.9) and (1.1.10). 

To recap, we have three stochastic processes, (L10 , L11 ), (X0 , Xi, X2), and 
(Vo, Vi, V2). By stochastic process, we mean a sequence of random variables 
indexed by time. These quantities are random because they depend on the 
coin tosses; indeed, the subscript on each variable indicates the number of 
coin tosses on which it depends. If we begin with any initial wealth X0 and 
specify values for L10 , L1i (H), and L1i (T), then we can compute the value 
of the portfolio that holds the number of shares of stock indicated by these 
specifications and finances this by borrowing or investing in the money market 
a.c;; necessary. Indeed, the value of this portfolio is defined recursively, beginning 
with X o, via the wealth equation 

(1.2.14) 

One might regard this as a contingent equation; it defines mndom variables, 
and actual values of these random variables are not resolved until the out
comes of the coin tossing are revealed. Nonetheless, already at time zero this 
equation permits us to compute what the value of the portfolio will be at 
every subsequent time under every coin-toss scenario. 

For a derivative security expiring at time two, the random variable V2 is 
contractually specified in a way that is contingent upon the coin tossing (e.g., 
if the coin tossing results in wiw2, so the stock price at time two is S2 (w 1w 2 ), 
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then for the European call we have V2 ( w1 w2) = ( S2 ( w1 w2) - K) +). We want to 
determine a value of Xo and values for Llo, Ll1 (H), and Ll1 (T) so that X2 given 
by applying (1.2.14) recursively satisfies X2(w1w2) = V2(w1w2), regardless of 
the values of w1 and w2 . The formulas above tell us how to do this. We call V0 

the value of X0 that allows us to accomplish this, and we define V1 (H) and 
V1(T) to be the values of X 1(H) and X1(T) given by (1.2.14) when Xo and 
Ll0 are chosen by the prescriptions above. In general, we use the symbols Lln 
and Xn to represent the number of shares of stock held by the portfolio and 
the corresponding portfolio values, respectively, regardless of how the initial 
wealth X0 and the Lln are chosen. \Vhen Xo and the Lln are chosen to replicate 
a derivative security, we use the symbol Vn in place of Xn and call this the 
{no-arbitrage} price of the derivative security at time n. 

The pattern that emerged with the European call expiring at time two 
persists, regardless of the number of periods and the definition of the final 
payoff of the derivative security. (At this point, however, we are considering 
only payoffs that come at a specified time; there is no possibility of early 
exercise.) 

Theorem 1.2.2 (Replication in the multiperiod binomial model). 
Consider an N -period binomial asset-pricing model, with O < d < 1 + r < u, 
and with 

_ l+r-d 
p=--

u-d ' 
_ u-1-r 
q=---. 

u-d 
(1.2.15) 

Let VN be a mndom variable (a derivative security paying off at time N) 
depending on the first N coin tosses w1 w2 ... w N. Define recursively backward 
in time the sequence of mndom variables VN-1, VN-2, ... , Vo by 

Vn(W1W2 ... Wn) = - 1-[pVn+l (w1W2 ... WnH) + qVn+l (w1w2 ... WnT)J, 
l+r 

(1.2.16) 
so that each Vn depends on the first n coin tosses W1 w2 ... Wn, where n mnges 
between N - 1 and 0. Next define 

A ( ) _ Vn+l {w1. •. WnH) - Vn+l (w1 . •. WnT) 
.Un Wt • • • Wn - ( H) S ( ) , Sn+l Wt•.• Wn - n+l Wt••• WnT 

(1.2.17) 

where again n mnges between O and N - 1. If we set Xo = Vo and define 
recursively forward in time the portfolio values Xi, X2, ... , XN by (1.2.11,), 
then we will have 

(1.2.18) 

Definition 1.2.3. For n = 1, 2, ... ,N, the mndom variable Vn(W1 ... wn) in 
Theorem 1.2.2 is defined to be the price of the derivative security at time n 
if the outcomes of the first n tosses are w1 ... Wn. The price of the derivative 
security at time zero is defined to be Vo. 
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PROOF OF THEOREM 1.2.2: We prove by forward induction on n that 

(1.2.19) 

where n ranges between O and N. The case of n = 0 is given by the definition 
of Xo as Vo. The case of n = N is what we want to show. 

For the induction step, we assume that (1.2.19) holds for some value of 
n less than N and show that it holds for n + 1. We thus let w1 w2 ... WnWn+ 1 

be fixed but arbitrary and assume as the induction hypothesis that (1.2.19) 
holds for the particular w1w2 ... Wn we have fixed. We don't know whether 
Wn+l = H or Wn+l = T, so we consider both cases. We first use (1.2.14) to 
compute Xn+l (w1w2 ... WnH), to wit 

Xn+l (w1W2 ... WnH) 

= Lln(W1W2 ... Wn)USn(W1W2 ... Wn) 

+(1 + r) ( Xn(W1W2 ... Wn) - Lln(W1W2 ... Wn)Sn(W1W2 • .. Wn)) • 

To simplify the notation, we suppress W1W2 ... Wn and write this equation 
simply as 

Xn+1(H) = LlnUSn + (1 + r)(Xn - LlnSn)- (1.2.20) 

With w1w2 ... Wn similarly suppressed, we have from (1.2.17) that 

Lln = Vn+1(H) - Vn+1(T) = Vn+i(H) - Vn+i(T). 
Sn+l (H) - Sn+l (T) ( U - d)Sn 

Substituting this into (1.2.20) and using the induction hypothesis (1.2.19) and 
the definition (1.2.16) of Vn, we see that 

Xn+1(H) = (1 + r)Xn + LlnSn(u - (1 + r)) 
_ (l )V. (Vn+i(H) - Vn+1(T))(u - (1 + r)) 
- +r n + d u-
= (1 + r)Vn + qVn+l (H) - qVn+1 (T) 

= pVn+1(H) + qVn+i(T) + qVn+i(H) - qVn+i(T) 

= Vn+i(H). 

Reinstating the suppressed coin tosses w1w 2 ... Wn, we may write this as 

Xn+l (w1w2 •. , WnH) = Vn+l (w1W2 ... WnH). 

A similar argument (see Exercise 1.4) shows that 

Xn+1(W1W2 .. . wnT) = Vn+1(W1W2 .. . w71T). 

Consequently, regardless of whether Wn+ 1 = H or Wn+ 1 = T, we have 

Xn+1(W1W2 • • -WnWn+1) = Vn+1(W1W2 .. 0 Wnwn+1). 
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Since w1w2 ... WnWn+l is arbitrary, the induction step is complete. D 
The multiperiod binomial model of this section is said to be complete be

cause every derivative security can be replicated by trading in the underlying 
stock and the money market. In a complete market, every derivative security 
has a unique price that precludes arbitrage, and this is the price of Definition 
1.2.3. 

Theorem 1.2.2 applies to so-called path-dependent options as well as to 
derivative securities whose payoff depends only on the final stock price. We 
illustrate this point with the following example. 

Example 1.2.4- Suppose as in Figure 1.2.2 that S0 = 4, u = 2, and d = ½
Assume the interest rate is r = ¼. Then f, = ij = ½. Consider a lookback option 
that pays off 

at time three. Then 

Va(HHH) = S3(HHH) - S3(HHH) = 32- 32 = 0, 
Va(HHT) = S2(HH) - S3(HHT) 16- 8 - 8, 
V3(HTH) = S1(H) - S3(HTH) 8 -8 0, 
Va(HTT) = S1 (H) - S3(HTT) 8 - 2 6, 
Va(THH) = S3(THH) - S3(THH) 8- 8 0, 
½(THT) S2(TH) - S3(THT) 4- 2 2, 
Va(TTH) = So - S3(TTH) 4 - 2 2, 
V3(TTT) = So - S3(TTT) = 4 - 0.50 = 3.50. 

We compute the price of the option at other times using the backward recur
sion (1.2.16). This gives 

4 [1 1 ] V2(HH) = 5 2V3(HHH) + 2V3(HHT) = 3.20, 

½(HT)= ; [iv3(HTH) + ½Va(HTT)] = 2.40, 

V2(TH) = ; [iVa(THH) + iVa(THT)] = 0.80, 

= 2.20, 

and then 

V. (H) = ; [½ V2(H H) + ½ V2(HT)] = 2.24, 

4 [1 1 l V1(T) = 5 2V2(TH)+ 2V2(TT)j = 1.20, 
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and finally 

Vo=; [~Vi(H) + ~Vi(T)] = 1.376. 

If an agent sells the lookback option at time zero for 1.376, she can hedge her 
short position in the option by buying 

Llo = V1(H) - V1(T) = 2.24 - 1.20 = 0_1733 
S1(H) - S1(T) 8 - 2 

shares of stock. This costs 0.6933 dollars, which leaves her with 1.376 -
0.6933 = 0.6827 to invest in the money market at 25% interest. At time 
one, she will have 0.8533 in the money market. If the stock goes up in price to 
8, then at time one her stock is worth 1.3867, and so her total portfolio value 
is 2.24, which is V1 (H). If the stock goes down in price to 2, then at time 
one her stock is worth 0.3467 and so her total portfolio value is 1.20, which 
is V1 (T). Continuing this process, the agent can be sure to have a portfolio 
worth V3 at tiine three, no matter how the coin tossing turns out. □ 

1.3 Computational Considerations 

The amount of computation required by a naive implementation of the deriva
tive security pricing algorithm given in Theorem 1.2.2 grows exponentially 
with the number of periods. The binomial models used in practice often have 
100 or more periods, and there are 2100 ~ 1030 possible outcomes for a se
quence of 100 coin tosses. An algorithm that begins by tabulating 2100 values 
for V100 is not computationally practical. 

Fortunately, the algorithm given in Theorem 1.2.2 can usually be organized 
in a computationally efficient manner. We illustrate this with two examples. 

Example 1.3.1. In the model with So = 4, u = 2, d = ½ and r = ¼, consider 
the problem of pricing a European put with strike price K = 5, expiring at 
time three. The risk-neutral probabilities are p = ½, ii = ½. The stock process 
is shown in Figure 1.2.2. The payoff of the option, given by V3 = (5 - S3 )+, 
can be tabulated as 

V3(HHH) = 0, Va(HHT) = V3(HTH) = Va(THH) = 0 

V3(HTT) = Va(THT) = V3(TTH) = 3, V3(TTT) = 4.50. 

There are 23 = 8 entries in this table, but an obvious simplification is possible. 
Let us denote by V3 ( s) the payoff of the option at time three when the stock 
price at time three is s. Whereas Va has the sequence of three coin tosses as 
its argument, the argument of V3 is a stock price. At time three there are only 
four possible stock prices, and we can tabulate the relevant values of v3 as 

v3(32) = 0, va(8) = 0, v3 (2) = 3, v3 (.50) = 4.50. 
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If the put expired after 100 periods, the argument of V10o would range over the 
2100 possible outcomes of the coin tosses whereas the argument of v100 would 
range over the 101 possible stock prices at time 100. This is a tremendous 
reduction in computational complexity. 

According to Theorem 1.2.2, we compute V2 by the formula 

(1.3.1) 

Equation (1.3.1) represents four equations, one for each possible choice of 
w1w2. We let v2(s) denote the price of the put at time two if the stock price 
at time two is s. In terms of this function, (1.3.1) talces the form 

and this represents only three equations, one for each possible value of the 
stock price at time two. Indeed, we may compute 

Similarly, 

v2(l6) = ~ [va(32) + va(s)] = 0, 

v2(4) = ~ [v3(8) + v3(2)] = 1.20, 

v2(l) = ~ [va(2) + va(.50)] = 3. 

v1(8) = ~ [1J2(16) + v2(4)] = 0.48, 

v1(2) = ~ [v2(4) + v2(1)] = 1.68, 

where v1 ( s) denotes the price of the put at time one if the stock price at time 
one is s. The price of the put at time zero is 

At each time n = 0, 1, 2, if the stock price is s, the number of shares of stock 
that should be held by the replicating portfolio is 

f, ( ) _ Vn+1(2s) - t'n+1(½s) 
n s - 2s - ls • 

2 

This is the analogue of formula (1.2.17). □ 
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In Example 1.3.1, the price of the option at any time n was a function of the 
stock price Sn at that time and did not otherwise depend on the coin tosses. 
This permitted the introduction of the functions Vn related to the random 
variables Vn by the formula Vn = vn(Sn). A similar reduction is often possible 
when the price of the option does depend on the stock price path rather than 
just the current stock price. We illustrate this with a second example. 

Example 1.3.2. Consider the lookback option of Example 1.2.4. At each time 
n, the price of the option can be written as a function of the stock price Sn 
and the maximum stock price Mn = maxo$k:5n Sk to date. At time three, 
there are six possible pairs of values for (S3, M3), namely 

(32, 32), (8, 16), (8, 8), (2, 8), (2, 4), (.50, 4). 

We define v3 (s, m) to be the payoff of the option at time three if Sa =sand 
Ma = m. We have 

va(32, 32) = 0, va(8, 16) = 8, va(8, 8) = 0, 

va(2, 8) = 6, va(2, 4) = 2, va(.50, 4) = 3.50. 

In general, let vn(s, m) denote the value of the option at t.ime n if Sn =sand 
Mn = m. The algorithm of Theorem 1.2.2 can be rewritten in terms of the 
functions Vn as 

Vn(s, m) =: [vn+1(2s, m V (2s)) + Vn+1(½s, m)], 

where m V (2s) denotes the maximum of m and 2s. Using this algorithm, we 
compute 

then compute 

v2(l6, 16) = : [ va(32, 32) + v2(8, 16)] = 3.20, 

v2( 4, 8) = ~ [ va(8, 8) + va(2, 8)] = 2.40, 

v2(4,4)= ~[va(8,8)+va{2,4)] =0.80, 

v2(l, 4) = ~ [ va(2, 4) + va{.50, 4)] = 2.20, 

v1{8,8) = ~[v2(16,16) +v2(4,8)] = 2.24, 

v1{2,4) = ~(v1{4,4) +v1{1,4)] = 1.20, 

and finally obtain the time-zero price 

vo( 4, 4) = ~ [ vi(S, 8) + v1 (2, 4)] - 1.376. 
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At each time n = 0. 1, 2, if the stock price is s and the maximum stock price to 
date is m, the number of shares of stock that should be held by the replicating 
portfolio is 

~ ( ) _ Vn+1(2s. m V (2s)) - Vn+i (½s, m) 
Un S, m - 1 

2s- -s 2 

This is the analogue of formula {l.2.17). 

1.4 Summary 

□ 

This chapter considers a multiperiod binomial model. At each period in this 
model, we toss a coin whose outcome determines whether the stock price 
changes by a factor of u or a factor of d, where O < d < u. In addition to 
the stock, there is a money market account with per-period rate of interest r. 
This is the rate of interest applied to both investing and borrowing. 

Arbitrage is a trading strategy that begins with zero capital and trades in 
the stock and money markets in order to make money with positive probabil
ity without any possibility of losing money. The multiperiod binomial model 
admits no arbitrage if and only if 

0 < d <I+ r < u. ( 1.1.2} 

We shall always impose this condition. 
A derivative security pays off at some expiration time N contingent upon 

the coin tosses in the first N periods. The arbitrage pricing theory method of 
assigning a price to a derivative security prior to expiration can be understood 
in two ways. First. one can ask how to assign a price so that one cannot form 
an arbitrage by trading in the derivative security, the underlying stock, and 
the money market. This no-arbitrage condition uniquely determines the price 
at all times of the derivative security. Secondly. at any time n prior to the 
expiration time N, one can imagine selling the derivative security for a price 
and using the income from this sale to form a portfolio, dynamically trading 
the stock and money market asset from time n until the expiration time N. 
This portfolio hedges the short position in the derivative security if its value 
at time N agrees with the payoff of the derivative security, regardless of the 
outcome of the coin tossing between times n and N. The amount for which the 
derivative security must be sold at time n in order to construct this hedge of 
the short position is the same no-arbitrage price obtained by the first pricing 
method. 

The no-arbitrage price of the derivative security that pays VN at time N 
can be computed recursively, backward in time, by the formula 
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The number of shares of the stock that should be held by a portfolio hedging 
a short position in the derivative security is given by 

(1.2.17) 

The numbers p and ii appearing in (1.2.16) are the risk-neutral probabilities 
given by 

_ 1+r-d 
p=---

u -d ' 
u-1-r 

ij=---. 
u-d 

(1.2.15) 

These risk-neutral probabilities are positive because of (1.1.2) and sum to 
1. They have the property that, at any time, the price of the stock is the 
discounted risk-neutral average of its two possible prices at the next time: 

In other words, under the risk-neutral probabilities, the mean rate of return for 
the stock is r, the same as the rate of return for the money market. Therefore, 
if these probabilities actually governed the coin t~ing (in fact, they do not), 
then an agent trading in the money market account and stock would have 
before him two opportunities, both of which provide the same mean rate of 
return. Consequently, no matter how he invests, the mean rate of return for 
his portfolio would also be r. In particular, if it is time N - 1 and he wants 
his portfolio value to be V N ( w1 ... w N) at time N, then at time N - 1 his 
portfolio value must be 

1 [fiVN(w1 ... WN-1H) + iiVN(w1 .. ,WN--1T)]. 
l+r 

This is the right-hand side of (1.2.16) with n = N-1, and repeated application 
of this argument yields (1.2.16) for all values of n. 

The explanation of (1.2.16) above was given under a condition contrary to 
fact, namely that p and q govern the coin tossing. One can ask whether such an 
argument can result in a valid conclusion. It does result in a valid conclusion 
for the following reason. When hedging a short position in a derivative security, 
we want the hedge to give us a portfolio that agrees with the payoff of the 
derivative security regardless of the coin tossing. In othc!r words, the hedge 
must work on all stock price paths. If a path is possible (i.e., has positive 
probability), we want the hedge to work along that path. The actual value 
of the probability is irrelevant. We find these hedges by solving a system 
of equations along the paths, a system of the form (1.2.2)-(1.2.3), (1.2.5)
(1.2.8). There are no probabilities in this system. Introducing the risk-neutral 
probabilities allows us to argue as above and find a solution to the system. 
Introducing any other probabilities would not allow such an argument because 
only the risk-neutral probabilities allow us to state that no matter how the 
agent invests, the mean rate of return for his portfolio is r. The risk-neutral 



20 1 The Binomial No-Arbitrage Pricing Model 

probabilities provide a shortcut to solving the system of equations. The actual 
probabilities are no help in solving this system. Under the actual probabilities, 
the mean rate of return for a portfolio depends on the portfolio, and when we 
are trying to solve the system of equations, we do not know which portfolio 
we should use. 

Alternatively. one can explain (1.2.16) without recourse to any discussion 
of probability. This was the approach taken in the proof of Theorem 1.2.2. 
The numbers ji and q were used in that proof, but they were not regarded as 
probabilities, just nun1bers defined by the formula (1.2.15). 

1.5 Notes 

No-arbitrage pricing is implicit in the work of Black and Scholes [5), but its 
first explicit development is provided by Merton [34), who began with the 
axiom of no-arbitrage and obtained a surprising number of conclusions. No 
arbitrage pricing was fully developed in continuous-time models by Harrison 
and Kreps (17] and Harrison and Pliska (18]. These authors introduced martin
gales (Sections 2.4 in this text and Section 2.3 in Volume II) and risk-neutral 
pricing. The binomial model is due to Cox, Ross, Rubinstein (11]; a good 
reference is [12]. The binomial model is useful in its own right, and as Cox 
et al. showed, one can rederive the Black-Scholes-Merton formula as a limit 
of the binomial model (see Theorem 3.2.2 in Chapter 3 of Volume II for the 
log-normality of the stock price obtained in the limit of the binomial 1nodel.) 

1. 6 Exercises 

Exercise 1.1. Assume in the one-period binomial market of Section 1.1 that 
both H and T have positive probability of occurring. Show that condition 
(1.1.2) precludes arbitrage. In other words, show that if Xo = 0 and 

then we cannot have X 1 strictly positive with positive probability unless X 1 

is strictly negative with positive probability as well, and this is the case re
gardless of the choice of the number Llo. 

Exercise 1.2. Suppose in the situation of Example 1.1.1 that the option sells 
for 1.20 at time zero. Consider an agent who begins with wealth X0 .= 0 and 
at time zero buys Ll0 shares of stock and I'0 options. The numbers Llo and 
I'0 can be either positive or negative or zero. This leaves the agent with a 
cash position of -4Ll 0 - 1.20I'0 . If this is positive, it is invested in the money 
market; if it is negative, it represents money borrowed from the money market. 
At time one, the value of the agent ·s portfolio of stock, option, and money 
market assets is 
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5 
X1 = 4'1081 + I'o(81 - 5)+ - 4 (44".lo + 1.20I'o). 

Assume that both H and T have positive probability of occurring. Show that 
if there is a positive probability that X1 is positive, then there is a positive 
probability that X 1 is negative. In other words, one cannot find an arbitrage 
when the time-zero price of the option is 1.20. 

Exercise 1.3. In the one-period binomial model of Section 1.1, suppose we 
want to determine the price at time zero of the derivative security V1 = 81 
(i.e., the derivative security pays off the stock price.) (This can be regarded 
as a European call with strike price K = 0). What is the time-zero price Vo 
given by the risk-neutral pricing formula (1.1.10)? 

Exercise 1.4. In the proof of Theorem 1.2.2, show undur the induction hy
pothesis that 

Xn+l (w1w2 ... WnT) = Vn+l (w1w2 ... WnT). 

Exercise 1.5. In Example 1.2.4, we considered an agent. who sold the look
back option for Vo = 1.376 and bought 4".lo = 0.1733 shares of stock at time 
zero. At time one, if the stock goes up, she has a portfolio valued at V1 (H) = 
2.24. Assume that she now takes a position of 4'11 (H) = ~:~z Z~=~:~z~~ in the 
stock. Show that, at time two, if the stock goes up again, she will have a port
folio valued at V2 (H H) = 3.20, whereas if the stock goes down, her portfolio 
will be worth V2 (HT) = 2.40. Finally, under the assumption that the stock 
goes up in the first period and down in the second period, assume the agent 
takes a position of "12(HT) = ~:~Z~Z~=~:~~g:~ in the stock. Show that, at 
time three, if the stock goes up in the third period, she will have a portfolio 
valued at Va(HTH) = O, whereas if the stock goes down, her portfolio will be 
worth Va ( HTT) = 6. In other words, she has hedged her short position in the 
option. 

Exercise 1.6 (Hedging a long position-one period). Consider a bank 
that has a long position in the European call written on the stock price in 
Figure 1.1.2. The call expires at time one and has strike price K = 5. In 
Section 1.1, we determined the time-zero price of this call to be Vo= 1.20. At 
time zero, the bank owns this option, which ties up capital V0 = 1.20. The 
bank wants to earn the interest rate 25% on this capital until time one (i.e., 
without investing any more money, and regardless of how the coin tossing 
turns out, the bank wants to have 

5 
4 · 1.20 = 1.50 

at time one, after collecting the payoff from the option (if any) at time one). 
Specify how the bank's trader should invest in the stock and money markets 
to accomplish this. 
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Exercise 1. 7 (Hedging a long position-multiple periods). Consider a 
bank that has a long position in the lookback option of Example 1.2.4. The 
bank intends to hold this option until expiration and receive the payoff V3 . At 
time zero, the bank has capital Vo = 1.376 tied up in the option and wants 
to earn the interest rate of 25% on this capital until time three (i.e., without 
investing any more money. and regardless of how the coin tossing turns out, 
the bank wants to have 

( D 3 
• l.376 = 2.6875 

at time three, after collecting the payoff from the lookback option at time 
three). SpPcify how the bank's trader should invest in the stock and the money 
market account to accomplish this. 

Exercise 1.8 (Asian option). Consider the three-period model of Example 
1.2.1, with S0 = 4, u = 2, d = ½, and take the interest rater = ¼, so that 
p = q = ½-For n = 0, 1, 2, 3, define Yn = I:;=0 Sk to be the sum of the 
stock prices between times zero and n. Consider an Asian call option that 
expires at time three and has strike K = 4 (i.e., whose payoff at time three is 
( ¼ Y3 - 4) +). This is like a European call, except the payoff of the option is 
based on the average stock price rather than the final stock price. Let Vn(s, y) 
denote the price of this option at time n if Sn =sand Yn = y. In particular, 
V3 ( 8, Y) = ( ¼ y - 4) +. 

(i) Develop an algorithm for computing Un recursively. In particular, write a 
formula for Vn in terms of Vn+t • 

(ii) Apply the algorithm developed in (i) to compute vo(4, 4), the price of the 
Asian option at time zero. 

(iii) Provide a formula for '5n(s, y), the number of shares of stock that should 
be held by the replicating portfolio at time n if Sn = s and Yn = y. 

Exercise 1.9 (Stochastic volatility, random interest rate). Consider a 
binomial pricing model, but at each time n > 1, the "up factor" un(w 1w2 ... wn), 

the "down factor" dn ( W1 w2 ... Wn), and the interest rate r n ( W1 w2 ... Wn) are 
allowed to depend on n and on the first n coin tosses w 1w2 ... Wn- The initial 
up factor u0 , the initial down factor do. and the initial interest rate r0 are not 
random. More specifically, the stock price at time one is given by 

S ( ) { uoSo if w1 = H, 
I W1 = . doSo 1f w1 = T, 

and, for n > 1, the stock price at time n + 1 is given by 
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One dollar invested in or borrowed from the money market at time zero grows 
to an investment or debt of 1 + r0 at time one, and, for n > 1, one dollar in
vested in or borrowed from the money market at time n grows to an investment 
or debt of 1 + rn(w1w2 .. ,wn) at time n + 1. We assume that for each n and 
for all w1w2 ... Wn, the no-arbitrage condition 

holds. We also assume that O < do < 1 + ro < uo, 

(i) Let N be a positive integer. In the model just described, provide an 
algorithm for determining the price at time zero for a derivative security 
that at time N pays off a random amount VN depending on the result of 
the first N coin tosses. 

(ii) Provide a formula for the number of shares of stock that should be held at 
each time n (0 < n < N - l) by a portfolio that replicates the derivative 
security V,v. 

(iii) Suppose the initial stock price is S0 = 80, with each head the stock price 
increases by 10, and with each tail the stock price decreases by 10. In 
other words, S1(H) = 90, S1(T) = 70, S2 (HH) = 100, etc. Assume the 
interest rate is always zero. Consider a European call with strike price 80, 
expiring at time five. What is the price of this call at time zero? 
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Probability Theory on Coin Toss Space 

2.1 Finite Probability Spaces 

A finite probability space is used to model a situation in which a random 
experiment with finitely many possible outcomes is conducted. In the context 
of the binomial model of the previous chapter, we tossed a coin a finite number 
of times. If, for example, we toss the coin three times, the set of all possible 
outcomes is 

fl= {HHH,HHT,HTH,HTT,THH,THT,TTH,TTT}. (2.1.1) 

Suppose that on each toss the probability of a head ( either actual or risk
neutral) is p and the probability of a tail is q = 1- p. We assume the tosses are 
independent, and so the probabilities of the individual elements w (sequences 
of three tosses W = W1 W2W3) in fJ are 

P(HHH) = p3 , P(HHT) = p2q, P(HTH) = p2q, P(HTT) = pq2 , (2.1.2) 

P(THH) = p2q, 'J?(THT) = pq2 , P(TTH) = pq2 , P(TTT) = q3 . 

The subsets of fJ are called events, and these can often be described in words 
as well as in symbols. For example, the event 

"The first toss is a head" = { w E fJ; w1 = H} 

= {HHH,HHT,HTH,HTT} 

has, as indicated, descriptions in both words and symbols. We determine the 
probability of an event by summing the probabilities of the elements in the 
event, i.e., 

P(First toss is a head) = P( H H H) + P( H HT} + P{ JlT H) + P( HTT) 

= (p3 + p2q) + (p2q + pq2) 

=p2(p+q) +pq(p+q) 
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= p2 + pq 

= p(p + q) 

=p. (2.1.3) 

Thus, the mathematics agrees with our intuition. 
With mathematical models. it is easy to substitute our intuition for the 

mathematics, but this can lead to trou hie. \Ve should instead verify that the 
mathematics and our intuition agree: otherwise, either our intuition is wrong 
or our model is inadequate. If our intuition an<l the mathematics of a model 
do not agree. we should seek a reconciliation before proceeding. In the case of 
(2.1.3), we set out to build a model in which the probability of a head on each 
toss is p. we proposed doing this by defining the probabilities of the elements 
of{} by (2.1.2), and we further defined the probability of an event (suhsct 
of {}) to be the sum of the probabilities of the clements in the event. These 
definitions force us to carry out the computation (2.1.3) as we have done, and 
we need to do this con1putation in order to check that it gets the expected 
answer. Otherwise, we would have to rethink our mathematical model for the 
coin tossing. 

We generalize slightly the situation just described, first by allowing {} to be 
any finite set, and second by allowing some elements in n to have probability 
zero. These generalizations lead to the following definition. 

Definition 2.1.1. A finite probability space consists of a sample space{} and 
a probability measure IP. The sample space {} is a nonempty finite set and 
the probability measure P is a function that assigns to each element w of n a 
number in [0, 1) so that 

L JP>(w) = i. (2.1.4) 

An event is a subset of n, and we define the probability of an event A to be 

P(A) = L JP>(w). (2.1.5) 
wE.4 

As mentioned before, this is a model for some random experiment. The set 
{} is the set of all possible outcomes of the experiment, P(w) is the probability 
that the particular outcome w occurs, and IP( A) is the probability that the 
outcome that occurs is in the set A. If P(A) = 0, then the outcome of the 
experiment is sure not to be in A; if P(A) = 1. then the outcome is sure to be 
in A. Because of (2.1.4), we have the equation 

P( n) = t. (2.1.6) 

i.e., the outcome that occurs is sure to be in the set n. Because IP( w) can be 
zero for some values of w, we are permitted to put in n even some outcomes 
of the experiment that are sure not to occur. It is clear from (2.1.5) that if A 
and B are disjoint subsets of n, then 

IP(A u B) = IP(A) + IP(B). (2.1. 7) 
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2.2 Random Variables, Distributions, and Expectations 

A random experiment generally generates numerical data. This gives rise to 
the concept of a random variable. 

Definition 2.2.1. Let ( fJ, IP) be a finite probability space. A random variable 
is a real-valued function defined on fJ. {We sometimes also permit a mndom 
variable to take the values +oo and -oo.) 

Example 2.2.2 (Stock prices}. Recall the space fJ of three independent coin
tosses (2.1.1). As in Figure 1.2.2 of Chapter 1, let us define stock prices by 
the formulas 

if W1 = W2 = H, 
if W1 =F W2, 

32 if W1 = W2 = W3 = H, 
8 if there are two heads and one tail, 

2 if there is one head and two tails, 

.50 if Wt = W2 = W3 = T. 

Here we have written the arguments of So, S1, S2, and Sa as w1w2wa, even 
though some of these random variables do not depend on all the coin tosses. In 
particular, S0 is actually not random because it takes the value 4, regardless 
of how the coin tosses turn out; such a random variable is sometimes called a 
degenemte mndom variable. □ 

It is customary to write the argument of random variables as w, even 
when w is a sequence such as w = w1w2w3. We shall use these two notations 
interchangeably. It is even more common to write random variables without 
any arguments; we shall switch to that practice presently, writing S3 , for 
example, rather than S3 (w1w2wa) or Sa(w). 

According to Definition 2.2.1, a random variable is a function that maps 
a sample space fJ to the real numbers. The distribution of a random variable 
is a specification of the probabilities that the random variable takes various 
values. A mndom variable is not a distribution, and a distribution is not a 
mndom variable. This is an important point when we later switch between 
the actual probability measure, which one would estimate from historical data, 
and the risk-neutral probability measure. The change of measure will change 
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distributions of random variables but not the random variables themselves. 
We make this distinction clear with the following example. 

Example 2.2.3. Toss a coin three times, so the set of possible outcomes is 

n = {HHH,HHT,HTH, HTT.THH. THT,TTH, TTT}. 

Define the random variables 

X = Total number of heads, 

In symbols, 

Y = Total number of tails. 

X(HHH) = 3, 

X(HHT} = X(HTH) = X(THH) = 2, 

X(HTT) = X(THT) = X(TTH) = 1. 

X(TTT) = 0, 

Y(TTT) = 3, 

Y(TTH) = Y(THT) = Y(HTT) = 2. 

Y(THH) = Y(HTH) = Y(HHT) = 1, 

Y(HHH) = 0. 

We do not need to know probabilities of various outcomes in order to specify 
these random variables. However, once we speci(y a probability measure on 
n, we can determine the ~istributions of X and Y. For example, if we specify 
the probability measure 1P under which the probability of head on each toss 
is ½ and the probability of each element in {} is ½, then 

~ - 1 
IP{w E !1; X(w) = 0} = IP{TTT} = 8, 
~ ~ 3 
IP{w E !1;X(w) = 1} = IP{HTT,THT,TTH} = 8, 
~ ~ 3 
IP{w E il;X(w) = 2} = IP{HHT,HTH,THH} = 8, 
~ ~ 1 
IP{w E !1;X(w) = 3} = IP{HHH} = 8. 

We shorten the cumbersome notation P{w E il; X(w) = j} to simply P{X = 
j}. It is helpful to remember, however, that the notation P{X = j} refers to 
the pro~ability of a subset of n, the set of elements w for which X(w) = j. 
Under IP, the probability that X take8 the four values 0, 1, 2, and 3 are 

~ 1 ~ 3 
IP{X = O} = 8, IP{X = l} = 8, 

P{X = 2} = ~, JP{X = 3} = !. 
8 8 
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This table of probabilities where X takes its various values records the distri
bution of X under Pl 

The random variable Y is different from X because it counts tails rather ~ 
than heads. However, under JP, the distribution of Y is the same as the distri-
bution of X: 

~ 1 
P{Y = O} = -, 

8 
~ 3 
P{Y = 2} = -, 

8 

~ 3 
P{Y = 1} = -, 

8 
~ 1 
P{Y = 3} = -. 

8 

The point here is that the random variable is a function defined on n, whereas 
its distribution is a tabulation of probabilities that the random variable talces 
various values. A random variable is not a distribution. 

Suppose, moreover, that we choose a probability measure P for [l that 
corresponds to a j probability of head on each toss and a ½ probability of 
tail. Then 

1 
P{X = O} = 27 , 

12 
P{X = 2} = 27 , 

6 
P{X = 1} = -, 

27 
8 

P{X=3}= 27 . 

The random variable X has a different distribution under P than under P. It 
is the same random variable, counting the total number of heads, regardless 
of the probability measure used to determine its distribution. This is the 
situation we encounter later when we consider an asset price under both the 
actual and the risk-neutral probability measures. _ 

Incidentally, although they have the same distribution under P, the random 
variables X and Y have different distributions under P. Indeed, 

8 
P{Y = O} = -, 

27 
6 

P{Y = 2} = -, 
27 

12 
P{Y=l}=-, 

27 
1 

P{Y =3} = -. 
27 

□ 

Definition 2.2.4. Let X be a mndom variable defined on a finite probability 
space (n,P). The expectation (or expected value) of X is defined to be 

EX= L X(w)JP(w). 
wen 

When we compute the expectation using the risk-neutral probability measure 
1P, we use the notation 

EX= L X(w)P(w). 
wen 

The variance of X is 
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It is clear from its definition that expectation is linear: if X and Y are 
random variables and c1 and c2 are constants, then 

In particular, if l(x) = ax+b is a linear function of a dummy variable x (a and 
bare constants), then E[t(X)] = t'(EX). When dealing with convex functions, 
we have the following inequality. 

Theorem 2.2.5 (Jensen's inequality). Let X be a mndom variable on a 
finite probability space, and let <p(x) be a convex function of a dummy variable 
x. Then 

1E[<,o(X)] > <,o(EX). 

PROOF: We first argue that a convex function is the maximum of all linear 
functions that lie below it; i.e., for every x E R, 

cp(x} = max{ t(x); t is linear and f(y) < <p(y) for ally ER}. (2.2.1) 

Since we are only considering linear functions that lie below <p, it is clear that 

<p(x} > max{ t(x); t is linear and t(y) < <p(y) for ally ER}. 

On the other hand, let x be an arbitrary point in R. Because <p is convex, 
there is always a linear function t' that lies below <p and for which <p( x) = £( x) 
for this particular x. This is called a support line of <p at x (see Figure 2.2.1). 
Therefore, 

<p(x) < max{ t(x); tis linear and f(y) < <p(y) for ally ER}. 

This establishes (2.2.1). Now let t be a linear function lying below <p. We have 

E [<,o(X)] > E [t'(X)] = t(EX). 

Since this inequality holds for every linear function t lying below '{), we may 
take the maximum on the right-hand side over all such t and obtain 

E ['P(X)] > max{ t(EX); tis linear and f(y) < <p(y) for ally E IR} 

= cp{EX). 

□ 

One consequence of Jensen's inequality is that 

We can also obtain this particular consequence of Jensen's inequality from the 
formula 

0 < E[(x - EX 2 )] = E[x 2 - 2XEX + (JEX)2] = E[X2] - (EX) 2 . 
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z 
Fig. 2.2.1. Support line of 'I' at z. 

2.3 Conditional Expectations 

In the binomial pricing model of Chapter 1, we chose risk-neutral probabilities 
p and q by the formula (1.1.8), which we repeat here: 

_ l+r-d ... u-1-r 
p= u-d ' q= u-d • 

It is easily checked that these probabilities satisfy the equation 

pu+qd = 1. 
l+r 

(2.3.1) 

(2.3.2) 

Consequently, at every time n and for every sequence of coin tosses w1 ... Wn, 
we have 

Sn(w1 • •. wn) = l.: r [Psn+1(W1., ,W,aH) + qSn+1(W1 •. • w,aT)] (2.3.3) 

(i.e., the stock price at time n is the discounted weighted average of the two 
possible stock prices at time n + 1, where p and q are the weights used in the 
averaging). To simplify notation, we define 

En[Bn+1](w1 ... Wn) = pSn+l (w1 .. 0 WnH) + qSn+l (w1 ... wnT) 

so that we may rewrite (2.3.3) as 

(2.3.4) 

(2.3.5) 
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~ Sa(TIT) = .50 

Fig. 2.3.1. A three-period model. 

and we call En[Sn+1l the conditional expectation of Sn+l based on the infor
mation at time n. The conditional expectation can be regarded as an estimate 
of the value of Sn+l based on knowledge of the first n coin tosses. 

For example.2.. in Figure 2.3.1 and_ using the risk-neutral probabilities p = 
ij = ½, we have Ei[S 2](H) = 10 and E 1 [S2](T) = 2.50. When we write simply 
1Ei[S2) without specifying whether the first coin toss results in head or tail, 
we have a quantity whose value, not known at time zero, will be determined 
by the random experiment of coin tossing. According to Definition 2.2.1, such 
a quantity is a random variable. 

More generally, whenever X is a random variable depending on the first 
N coin tosses, we can estimate X based on information available at an earlier 
time n < N. The following definition generalizes (2.3.4). 

Definition 2.3.1. Let n satisfy 1 < n < N, and let Wt ... Wn be given and, 
for the moment, fixed. There are, 2N -n possible continuations Wn+l ... WN of 
the sequence fixed Wt .•. Wn. Denote by # H ( Wn+ 1 ..• w N) the number of heads 
in the continuation Wn+l ... WN and by #T(wn+l ... WN) the number of tails. 
We define 

En(X](w1 ... Wn) 

P-#H(Wn+t•·•WN)q-#T(wn+l··•WN)X(w w w w ) 1 • • • n n+l • • • N (2.3.6) 

and call En [ X] the conditional expectation of X based on the information at 
time n. 

Based on what we know at time zero, the conditional expectation En[X) is 
random in the semie that its value depends on the first n coin tosses, which we 
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do not know until time n. For example, in Figure 2.3.1 and using p = q = ½, 
we obtain 

E1 [Sa)(H) = 12.50, 

so E1 (S3) is a random variable. 

~ 
E1 [S3](T) = 3.125, 

Definition 2.3.1 continued The two extreme cases of conditioning are 
Eo[X), the conditional expectation of X based on no information, which we 
define by 

Eo(X) = EX, (2.3.7) 

and EN[X], the conditional expectation of X based on knowledge of all N coin 
tosses, which we define by 

(2.3.8) 

The conditional expectations above have been computed using the risk
neutral probabilities p and q. This is indicated by the ~ appearing in the 
notation En. Of course, conditional expectations can also be computed using 
the actual probabilities p and q, and these will be denoted by En. 

Regarded as random variables, conditional expectations have five funda
mental properties, which we will use extensively. These are listed in the fol
lowing theorem. We state them for conditional expectations computed under 
the actual probabilities, and the analogous results hold for conditional expec
tations computed under the risk-neutral probabilities. 

Theorem 2.3.2 (Fundamental properties of conditional expectations). 
Let N be a positive integer, and let X and Y be random variables depending 
on the first N coin tosses. Let O < n < N be given. The following properties 
hold. 

(i) Linearity of conditional e:,;pectations. For all constants c1 and c2, we 
have 

En(c1X + c2Y] = c1En(X] + c2En(Y]. 

(ii} Taking out what is known. If X actually depends only on the first n 
coin tosses, then 

En(XY] = X. En(Y). 

(iii) ltemted conditioning. If O < n < m < N, then 

In particular, E [ Em [X)] = EX. 
(iv} Independence. If X depends only on tosses n + 1 through N, then 

En(X) = EX. 
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(v) Conditional Jensen's inequality. If <p(x) is a convex function of the 
dummy variable x, then 

The proof of Theorem 2.3.2 is provided in the appendix. We illustrate the 
first four properties of the theorem with examples based on Figure 2.3.1 using 
the probabilities p = j, q = ½-The fifth property, the conditional Jensen's 
inequality, follows from linearity of conditional expectations in the same way 
that Jensen's inequality for expectations follows from linearity of expectations 
(see the proof of Theorem 2.2.5). 

Example 2.3.3 {Linearity of conditional expedation.'1). With p = j and q = ½ 
in Figure 2.3.1, we compute 

2 1 
E1[S2](H) = 3 · 16 + 3 · 4 = 12, 

4 2 2 1 
E1[S3](H) = g · 32 + 9 · 8 + 9 · 8 + g · 2 = 18, 

and consequently Ei[S2){H) + E1[S3](H) = 12 + 18 = 30. But also 

4 2 2 1 
Ei[S2 + Sa](H) = 9(16 + 32) + 9(16 + 8) + 9(4 + 8) + 9(4 + 2) = 30. 

A similar computation shows that 

In conclusion, regardless of the outcome of the first coin toss, 

Example 2.9 . ..f. (Taking out what is known). We first recall from Example 2.3.3 
that 

2 1 
Ei[S 2](H) = 3 · 16 + 3 · 4 = 12. 

If we now want to estimate the product S 1 S2 based on the information at 
time one, we can factor out the S 1 , as seen by the following computation: 

A similar computation shows that 

In conclusion, regardless of the outcome of the first toss, 
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Example 2.3.5 {Iterated conditioning). We first estimate S3 based on the in
formation at time two: 

2 1 
~[S3J(H H) = 3 · 32 + 3 · 8 = 24, 

2 1 
E2[S3](HT) = 3 · 8 + 3 · 2 = 6, 

2 1 
E2[Sa](TH) = 3 · 8 + 3 · 2 = 6, 

2 1 1 
E2 [S3](TT) = 3 · 2 + 3 · 2 = 1.50. 

We now estimate the estimate, based on the information at time one: 

E1 [E2[S3J] (H) = ~ · E2[S3)(H H) + ~ • E2[S3](HT) 

2 1 = 3 . 24 + 3 . 6 = 18, 

E1 [E2[SaJ] (T) = ~ · E2[S3){TH) + ~E2[S3](TT) 

2 1 
= 3 . 6 + 3 . 1.50 = 4.50. 

The estimate of the estimate is an average of averages, and it is not surprising 
that we can get the same result by a more comprehensive averaging. This 
more comprehensive averaging occurs when we estimate S3 directly based on 
the information at time one: 

4 2 2 1 
E1 [S3) ( H) = 9 · 32 + 9 · 8 + 9 · 8 + 9 · 2 = 18, 

4 2 2 1 1 
Ei[S 3){T) = 9 · 8 + 9 · 2 + 9 • 2 + 9 • 2 = 4.50. 

In conclusion, regardless of the outcome of the first t0&'1, we have 

E1 [E2[S3J] = Ei[Sa]. 

Example 2.3. 6 {Independence). The quotient r, talces either the value 2 or ½, 
depending on whether the second coin toss results in head or tail, respectively. 
In particular, l does not depend on the first coin toss. We compute 

Ei [S2] (H) = ~. S2(H H) + ! . S2(HT) 
S1 3 S1(H) 3 S1(H) 

2 1 1 3 
=a· 2 +a·2 = 2' 

Ei [S2] (T) = ~ . S2(TH) + ! . S2(TT) 
S1 3 S1(T) 3 S1(T) 

2 1 1 3 
= 3. 2 + 3. 2 = 2· 
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We see that E1 [ t] does not depend on the first coin toss (is not really 

random) and in fact is equal to 

S2 2 1 1 3 
E- = - • 2 + - · - = -. 

S1 3 3 2 2 

2.4 Martingales 

In the binomial pricing model of Chapter 1. we chose risk-neutral probabilities 
p and ij so that at every time n and for every coin toss sequence w1 ... Wn we 
have (2.3.3). In terms of the notation for conditional expectations introduced 
in Section 2.3, this fact can be written as (2.3.5). If we divide both sides of 
(2.3.5) by {l + r)n, we get the equation 

(2.4.1) 

It does not matter in this model whether we write the term (l+r\n+i inside 
or outside the conditional expectation because it is constant ( see Theorem 
2.3.2{i)}. In models with random interest rates, it would matter; we shall 
follow the practice of writing this term inside the conditional expectation 
since that is the way it would be written in models with random interest 
rates. 

Equation {2.4.l) expresses the key fact that under the risk-neutral mea
sure, for a stock that pays no dividend, the best estimate based on the infor
mation at time n of the value of the discounted stock price at time n + l is the 
discounted stock price at time n. The risk-neutral probabilities are chosen to 
enforce this fact. Processes that satisfy this condition are called martingales. 
We give a formal definition of martingale under the actual probabilities p and 
q; the definition of martingal£_ under the risk-neutral probabilities p and ij is 
obtained by replacing En by En in (2.4.2). 

Definition 2.4.1. Consider the binomial asset-pricing model. Let Mo, 1\11, ... , 
l\lN be a sequence of random variables, with each l\fn depending only on the 
first n coin tosses (and Alo constant). Such. a sequence of mndom variables is 
called an adapted stochastic process. 

{i) If 
Aln = En[Afn+1J, n = 0, l, ... , N - 1, 

we say this process is a martingale. 
{ii} If 

Afn < En(Afn+l], n = 0, l, ... , N - l, 

(2.4.2) 

we say the process i., a submartingale (even though it may have a tendency 
to increase}; 
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(iii) If 
Mn> En(Mn+1J, n = 0, 1, ... ,N -1, 

we say the process is a supermartingale (even though it may have a ten
dency to decrease). 

Remark s.-4.s. The martingale property in (2.4.2) is a "one-step-ahead" condi
tion. However, it implies a similar condition for any number of steps. Indeed, if 
M0 ,M 1, ... ,MN is a martingale and n < N-2, then the martingale property 
(2.4.2) implies 

Taking conditional expectations on both sides based on the information at 
time n and using the iterated conditioning property (iii) of Theorem 2.3.2, we 
obtain 

Because of the. martingale property (2.4.2), the left-hand side is Mn, and we 
thus have the "two-step-ahead" property 

Mn = En(Mn+2J. 

Iterating this argument, we can show that whenever O < n < m < N, 

{2.4.3) 

One might call this the "multistep-ahead" version of the martingale property. 

Remark B.,4.9. The expectation of a martingale is constant over time, i.e., if 
Mo, M1, ... , MN is a martingale, then 

Mo= EMn, n = 0, 1, ... , N. (2.4.4) 

Indeed, if Mo, M1, ... , MN is a martingale, we may take expectations on both 
sides of (2.4.2), using Theorem 2.3.2(iii), and obtain EMn = E[Mn+1] for 
every n. It follows that 

EMo = EM1 = EM2 = • • • = EMN-1 = EMN. 

But Mo is not random, so Mo = EAfo, and (2.4.4) follo\\rs. □ 

In order to have a martingale, the equality in (2.4.2) must hold for all 
possible coin toss sequences. The stock price process in Figure 2.3.1 would be 
a martingale if the probability of an up move were f, = I and the probability 
of a down move were q = j because, at every node in the tree in Figure 
2.3.1, the stock price shown would then be the average of the two possible 
subsequent stock prices averaged with these weights. For example, 

1 2 
S1(T) = 2 = 3 · S2(TH) + 3 · S2(TT). 
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A similar equation would hold at all other nodes in the tree, and therefore we 
would have a martingale under these probabilities. 

A martingale has no tendency to rise or fall since the average of its next 
period values is always its value at the current time. Stock prices have a 
tendency to rise a.nd, indePd, should rise on average fast.er than the money 
market in order to compensate investors for their inherent risk. In Figure 2.3. l 
more realistic choices for p and q are p = j and q = ½. With these choices, 
we have 

3 
EnlSn+t] = 2Sn 

at every node in the tree (i.e., on average, t.he next period stock price is 50% 
higher than the current stock price). This growth rate exceeds the 25% interest 
rate we have been using in this model, as it should. In particular, with p = j, 
q = ½, and r = ¼, the discounted stock price has a tendency to rise. Note 
that when r = ¼, we have i!r = i, so the discounted stock price at time n is 

( 1) n Sn. We compute 

The discounted stock price is a submartingale under the actual probabilities 
p = 3, q = ½. This is typically the case in real markets. 

The risk-neutral probabilities, on the other hand. are chosen to make the 
discounted stock price be a martingale. In Figure 2.3.1 with p = q = ½, one 
can check that the martingale equation 

(2.4.5) 

holds at every node. The following theorem shows that this example is repre
sentati ve. 

Theorem 2.4.4. Consider the geneml binomial model with O < d < 1 +r < u. 
Let the risk-neutral probabilities be given by 

_ l+r-d 
p=---

u -d ' 
_ u-1-r 
q = d • u-

Then, under the risk-neutral measure, the discounted stock price is a martin
gale, i.e., equation {2.,1..1} holds at every time n and for every sequence of 
coin tosses. 

We give two proofs of this theorem, an elementary one, which does not 
rely on Theorem 2.3.2, and a deeper one, which does rely on Theorem 2.3.2. 
The second proof will later be adapted to continuous-time models. 

Note in Theorem 2.4.4 that the stock does not pay a dividend. For a 
dividend-paying stock, the situation is described in Exercise 2.10. 



2.4 Martingales 39 

FIRST PROOF: Let n and w1 ... Wn be given. Then 

En [ (I !n:i~+l] (w1 ••• Wn) 

= ( I ) • l [fiSn+l (w1 ... WnH) + iiSn-1 (w1 • • • WnT)] l+rn l+r 

= ( l ) • - 1-[fruSn(Wt .. , Wn} + ijdSn(W1 • • • Wn)] 
l+rn l+r 

_ Sn(W1 ... Wn} . pu + qd 
(l+r)n l+r 

Sn(W1 .. , Wn) 
(1 + r)n 

SECOND PROOF: Note that 8s;1 depends only on the (n + l)st coin toss. 
Using the indicated properties from Theorem 2.3.2, we compute 

~ [ Sn+ 1 ] ~ [ Sn Sn+ 1 ] 
En (1 + r)n+l = En (1 + r)n+l • S:-

Sn E [ 1 Sn+l] 
= (l+r)n n l+r ·s;-

(Taking out what iE known) 

Sn . _l_E_Sn_+_l 
(1 + r)n 1 + r Sn 

(Independence) 
Sn fru + ijd 

- (1 + r)n 1 + r 

□ 

In a binomial model with N coin tosses, we imagine an investor who at 
each time n takes a position of L1n shares of stock and holds this position 
until time n + 1, when he takes a new position of L1n+l shares. The portfolio 
rebalancing at each step is financed by investing or borrowing, as necessary, 
from the money market. The "portfolio variable" L1n may depend on the 
first n coin tosses, and L1n+ 1 may depend on the first n + 1 coin tosses. In 
other words, the portfolio process L10 , L11, ... , L1N-l is adapted, in the sense of 
Definition 2.4.1. If the investor begins with initial wealth X0 , and Xn denotes 
his wealth at each time n, then the evolution of his wealth is governed by the 
wealth equation (1.2.14) of Chapter 1, which we repeat here: 

(2.4.6) 
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Note that each X 11 depends only on the first n coin tosses (i.e., the wealth 
process is adapted). 

We may inquire about the average rate of growth of the investor's wealth. 
If we mean the average under the actual probabilities, the answer depends 
on the portfolio process he uses. In particular, since a stock generally has a 
higher average rate of growth than the money market, the investor can achieve 
a rate of growth higher than the interest rate by taking long positions in the 
stock. Indeed, by borrowing from the money market, the investor can achieve 
an arbitrarily high average rate of growth. Of course, such leveraged positions 
are also extremely risky. 

On the other hand. if we want to know the average rate of growth of the 
investor's wealth under the risk-neutral probabilities, the portfolio the investor 
uses is irrelevant. Under the risk-neutral probabilities, the average rate of 
growth of the stock is equal to the interest rate. No matter how the investor 
divides his wealth between the stock and the money market account. he will 
achieve an average rate of growth equal to the interest rate. Although some 
portfolio processes are riskier then others under the risk-neutral measure, they 
all have the same average rate of growth. We state this result as a theorem, 
whose proof is given in a way that we can later generalize to continuous time. 

Theorem 2.4.5. Consider the binomial model with N periods. Let il 0, il 1, ... , 
ilN-1 be an adapted portfolio process, let Xo be a real number, and let the 
wealth process Xi ..... XN be genemted recursively by (12.4-6}. Then the dis
counted wealth process (I~;)n, n = 0, 1, ... , N, is a martingale under the 
risk-neutral measure; i.e., 

Xn ~ [ Xn+l ] 
( 1 + r) n = En ( 1 + r) n + 1 ' n = 0, 1, ••• ' N - 1. (2.4.7) 

PROOF: We compute 

E [ Xn+I ] _ IE [ ilnSn+l Xn - ilnSn] 
n (1 + r)n+l - n (1 + r)n+l + (1 + r)n 

= E [ ilnSn+l ] IE [Xn - ilnSn] 
n (1 + r)n+l + n (1 + r)n 

(Linearity) 

~ [ Sn+l ] Xn - ilnSn 
= ilnEn (1 + r)n+l + (1 + r)n 

(Taking out what is known) 

_ il Sn Xn - ilnSn 
- "(l+r}n + (l+r)" 

(Theorem 2.4.4) 

Xn 
----(1 + r)n • □ 
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Corollary 2.4.6. Under the conditions of Theorem !l.,4. 5, we have 

~ Xn 
E ( ) = X0 , n = Or 1, ... , N. l+rn 

(2.4.8) 

PROOF: The corollary follows from the fact that the expected value of a 
martingale cannot change with time and so must always be equal to the time
zero value of the martingale (see Remark 2.4.3). Applying this fact to the 
ii-martingale (t~~", n = 0, 1, ... , N, we obtain (2.4.8). D 

Theorem 2.4.5 and its corollary have two important consequences. The 
first is that there can be no arbitrage in the binomial model. If there were 
an arbitrage, we could begin with Xo = 0 and find a portfolio process whose 
corresponding wealth process X 1, X 2, ... , X N satisfied X N ( w) > 0 for all coin 
toss sequences w and XN(w) > 0 for at least one coin toss sequence w. But 
then we would have EXo = 0 and E ci!~R > 0, which violates Corollary 2.4.6. 

In general, if we can find a risk-neutral measure in a model (i.e., a measure 
that agrees with the actual probability measure about which price paths have 
zero probability, and under which the discounted prices of all primary assets 
are martingales), then there is no arbitrage in the model. This is sometimes 
called the First Fundamental Theorem of Asset Pricing. The essence of its 
proof is contained in the preceding paragraph: under a risk-neutral measure, 
the discounted wealth process has constant expectation, so it cannot begin 
at zero and later be strictly positive with positive probability unless it also 
has a positive probability of being strictly negative. The First Fundamental 
Theorem of Asset Pricing will prove useful for ruling out arbitrage in term
structure models later on and thereby lead to the Heath-Jarrow-Morton no
arbitrage condition on forward rates. 

The other consequence of Theorem 2.4.5 is the following version of the 
nsk-neutml pricing f onnula. Let V N be a random variable ( derivative security 
paying off at time N) depending on the first N coin tosses. We know from 
Theorem 1.2.2 of Chapter 1 that there is an initial wealth Xo and a replicating 
portfolio process L'.10, ... , LlN-1 that generates a wealth process X1, ... , XN 
satisfying XN = VN, no matter how the coin tossing turns out. Because (t!;)", 

n = 0, 1, ... , N, is a martingale, the "multistep ahead" property of Remark 
2.4.2 implies 

(1 :~)n = En [ (1 :~)N] = E,. [ (1 ::)N]. (2.4.9) 

According to Definition 1.2.3 of Chapter 1, we define the price of the derivative 
security at time n to be Xn and denote this price by the symbol Vn. Thus, 
(2.4.9) may be rewritten as 

(2.4.10) 

or, equivalently, 
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V,, = En [(I +:)N-n]. (2.4.11) 

We sumn1arize with a theorem. 

Theorem 2.4. 7 (Risk-neutral pricing formula). Consider an N -period 
binomial asset-pricin..9 model with O < d < 1 + r < u and with risk-neutral 
probability measure P. Let VN be a random variable (a derivative security 
paying off at time N) depending on the coin tosses. Then. for n between O and 
N. the price of the derivative security at time n is given by the risk-neutral 
pricing formula (2.,4.11). Furth!_rmore, the discounted price of the derivative 
security is a martingale under P; i.e .. 

( Vn ) = E,, [ Vn)l I] , n = 0, 1, ... 'N - 1. 
l+rn (l+rn+ 

(2.4.12) 

The random variables Vn defined by (2.1,. 11) are the same as the random 
variable Vn defined in Theorem 1. 2. 2. 

The remaining steps in the proof of Theorem 2.4. 7 are outlined in Exercise 
2.8. We note that we chose the risk-neutral measure in order to make the dis
counted stock price a martingale. According to Theorem 2.4.7, a consequence 
of this is that discounted derivative security prices under the risk-neutral mea
sure are also martingales. 

So far, we have discussed only derivative securities that pay off on a single 
date. Many securities, such as coupon-paying bonds and interest rate swaps, 
make a series of payments. For such a security, we have the following pricing 
and hedging formulas. 

Theorem 2.4.8 (Cash flow valuation). Consider an N-period binomial 
asset pricjng-model with O < d < 1 + r < u, and with risk-neutral probability 
measure P. Let Co, C 1, ... , C N be a sequence of random variables such that 
each Cn depends only on w1 ... Wn. The price at time n of the derivative 
security that makes payments Cn, ... , CN at times n, ... , N, respectively, is 

{2.4.13) 

The price process Vn, n = 0, 1, ... , N, satisfies 

Cn(w1 .. . wn) = Vn(w1 .. . wn)- - 1-[fiVn+1{w1 .. . wnH) 
l+r 

+qVn+1(w1 .. . wnT)].(2.4.14) 

We define 
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where n ranges between 0 and N - 1. If we set Xo = Vo and define recursively 
forward in time the portfolio values X 1, X 2, ... , X N by 

then we have 
Xn(W1 ... Wn) = Vn(W1 ... Wn) 

for all n and all w1 ... Wn. 

(2.4.16) 

(2.4.17) 

In Theorem 2.4.8, Vn is the so-called net present valm! at time n of the se

quence of payments Cn, ... , CN. It is just the sum of the value En [ (l+:f~n-k>] 

of each of the payments Ck to be made at times k = n, k = n + 1, ... , k = N. 
Note that the payment at time n is included. This payment Cn depends on 
~nly the first n tosses and so can be taken outside the conditional expectation 
En, i.e., 

In the case of n = N, (2.4.13} reduces to 

VN =CN. 

(2.4.18) 

(2.4.19) 

Consider an agent who is short the cash flows represented by Co, ... , Cn 
{i.e., an agent who must make the payment Cn at each time n). (We allow 
these payments to be negative as well as positive. If a payment is negative, 
the agent who is short actually receives cash.) Suppose the agent in the short 
position invests in the stock and money market account, so that, at time n, 
before making the payment Cn, the value of his portfolio is Xn. He then makes 
the payment Cn. Suppose he then takes a position Lln in stock. This will cause 
the value of his portfolio at time n + 1 before making the payment Cn+l to 
be Xn+l, given by (2.4.16). If this agent begins with X0 = V0 and chooses 
his stock positions Lln by (2.4.15), then (2.4.17) holds and, in particular, 
XN = VN = CN (see (2.4.17), and (2.4.19)). Then, at time N he makes the 
final payment C N and is left with 0. He has perfectly hedged the short position 
in the cash flows. This is the justification for calling Vn the value at time n of 
the future cash flows, including the payment Cn to be made at time n. 

PROOF OF THEOREM 2.4.8: To prove (2.4.17), we proceed by induction on 
n. The induction hypothesis is that Xn(w1 ... wn) = Vn(w1 ... wn) for some 
n E {0, 1, ... , N - 1} and all W1 ... Wn. We need to show that 

Xn+l (w1 ... WnH) = Vn+l (w1 ... WnH), 

Xn+l (w1 ... WnT) = Vn+l (w1 ... WnT). 

We prove (2.4.20); the proof of (2.4.21) is analogous. 

(2.4.20) 

(2.4.21) 
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From (2.4.18) and iterated conditioning (Theorem 2.3.2(iii)), we have 

Vn = Cn + En [ 1 ! rEn+l [ t (l + r~k-(n+l)]] 
k=n+l 

= Cn + En [ l : r Vn+l] , 

where we have used (2.4.13) with n replaced by n+ 1 in the last step. In other 
words, for all w1 ... Wn, we have 

Vn(W1 • .. Wn) - Cn(w1. •. Wn) 

= - 1-[fiVn+l (w1 ... WnH) + qVn+I (wi. • • WnT)] • 
l+r 

Since w1 ... Wn will be fixed for the rest of the proof, we will suppress these 
symbols. For example, the last equation will be written simply as 

Vn - Cn = l: r [i>Vn+1(H) + <iVn+1(T)]. 

We compute 

Xn+1(H) = LlnSn+i(H) + (1 + r)(Xn - Cn - LlnSn) 

Vn+I (H) - Vn+l (T) ( ) 
= Sn+1(H) - Sn+1(T) Sn+1(H) - (1 + r)Sn 

+(1 + r)(Vn - Cn) 

= Vn+l~:~ ~~n+t(T) (uSn - (1+ r)Sn) 

+fiVn+dH) + qVn+1(T) 
u-l-r 

= (Vn+i(H) - Vn+i(T)) u _ d + pVn+1(H) + qVn+i(T) 

= (Vn+i(H) - Vn+i(T))q + pVn+i(H) + <iVn+1(T) 
= (p + q)Vn+1(H) = Vn+dH). 

This is (2.4.20). □ 

2.5 Markov Processes 

In Section 1.3, we saw that the computational requirements of the derivative 
security pricing algorithm of Theorem 1.2.2 can often be substantially reduced 
by thinking carefully about what information needs to be remembered as we 
go from period to period. In Example 1.3.1 of Section 1.3, the stock price 
was relevant, but the path it followed to get to its current price was not. In 
Example 1.3.2 of Section 1.3, the stock price and the maximum value it had 
achieved up to the current time were relevant. In this section, we formalize 
the procedure for determining what is relevant. and what is not. 
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Definition 2.5.1. Consider the binomial asset-pricing model. Let Xo, X 1, ... , 

XN be an adapted process. If, for every n between O and N - l and for every 
function f(x), there is another function g(x) {depending on n and f) such 
that 

(2.5.1) 

we say that Xo, X1, ... , XN is a Markov process. 

By definition, En(/(Mn+i)J is random; it depends on the first n coin tosses. 
The Markov property says that this dependence on the coin tosses occurs 
through Xn (i.e., the information about the coin tosses one needs in order to 
evaluate En[/(Xn+i)J is summarized by Xn)• We are not so concerned with 
determining a formula for the function g right now as we are with asserting its 
existence because its mere existence tells us that if the payoff of a derivative 
security is random only through its dependence on XN, then there is a version 
of the derivative security pricing algorithm in which we do not need to store 
path informa~ion (see Theorem 2.5.8). In examples in this section, we shall 
develop a method for finding the function g. 

Example 2.5.2 {Stock price}. In the binomial model, the stock price at time 
n + 1 is given in terms of the stock price at time n by the formula 

Therefore, 

En(/(Sn+1))(w1 ... wn) = pf(uSn(w1 .. . wn)) + qf(dSn(Wt .. . wn)), 

and the right-hand side depends on Wt ... Wn only through the value of 
Sn(w1 ... wn). Omitting the coin tosses Wt ... Wn, we can rewrite this equa-
tion as 

1En [/(Sn+l )] = g(Sn), 

where the function g(x) of the dummy variable xis defined by g(x) = pf(ux)+ 
q f ( dx). This shows that the stock price process is Markov. 

Indeed, the stock price process is Markov under either the actual or the 
risk-neutral probability measure. To determine the price Vn at time n of a 
derivative security whose payoff at time N is a function VN of the stock price 
SN (i.e., VN = VN(SN )), we use the risk-neutral pricing formula (2.4.12), 
which reduces to 

1 ~ 
Vn = l En[Vn+tJ, n = 0, 1, ... , N - 1. 

+r 

But VN = VN(SN) and the stock price process is Markov, so 
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for some function v N - t · Similarly, 

for some function v N _2 . In general, Vn = Vn (Sn) for some function Vn. rvlore
over, we can compute these functions recursively by the algorithm 

Vn(s) = - 1- [fivn+t (us)+ QVn+t (ds)], n = N - 1. N - 2, ... , 0. (2.5.2) 
l+r 

This algorithm works in the binomial model for any derivative security whose 
payoff at time N is a function only of the stock price at time N. In particular, 
we have the same algorithm for puts and calls. The only difference is in the 
formula for VN(s). For the call, we have VN(s) = (s - K)+; for the put, we 
have VN(s) = (K - s)+. □ 

The martingale property is the special case of (2.5.1) with /(x) = x and 
g(x) = x. In order for a process to be Markov, it is necessary that for every 
function f there must be a corresponding function g such that (2.5.1) holds. 
Not every martingale is Markov. On the other hand, even when considering 
the function /(x) = x, the Markov property requires only that 1En[.l\fn+1J = 
g(.l\111 ) for some function g; it does not require that the function g be given 
by g(x) = x. Not every Markov process is a martingale. Indeed, Example 
2.5.2 shows that the stock price is :Markov under both the actual and the risk
neutral probability measures. It is typically not a martingale under either 
of these measures. However, if pu. + qd = I, then the stock price is both a 
martingale and a ~1arkov process under the actual probability measure. 

The following lemma often provides the key step in the verification that a 
process is Markov. 

Lemma 2.5.3 (Independence). In the N-period binomial asset pricing 
model, let n be an integer between O and N. Suppose the random variables 
X 1 .... , X K depend only on coin tosses 1 th.rough n and thP-mndom vari-
ables Y1, .... yL depend only on coin tm;.~e.r, n + 1 through N. {The super-
scripts 1, ... , K on X and 1, ... , L on Y are !mperscripts~ not exponents.) Let 
f (x 1, ... , xK, y 1, ... , yL) be a function of dummy variables x 1 •... , xK and 
y1, ... , yL, and define 

(2.5.3) 

Then 
(2.5.4) 

For the following discussion and proof of the lemma, we a.~snme that K = 
L = 1. Then (2.5.3) takes the form 

g(x) = JEJ(x, Y) (2.5.3)' 
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and (2.5.4) takes the form 

En(/(X, Y)) = g(X), (2.5.4)' 

where the random variable X is assumed to depend only on the first n coin 
tosses, and the random variable Y depends only on coin tosses n + 1 through 
N. 

This lemma generalizes the property "taking out what is known" of The
orem 2.3.2(ii). Since X is "known" at time n, we want to "take it out" of the 
computation of the conditional expectation En[/(X, Y)]. However, because 
X is inside the argument of the function /, we cannot simply factor it out 
as we did in Theorem 2.3.2(ii). Therefore, we hold it constant by replacing 
the random variable X by an arbitrary but fixed dummy variable x. We then 
compute the conditional expectation of the random variable /(x, Y), whose 
randomness is due only to the dependence of Yon tosses n + 1 through N. 
Because of Theorem 2.3.2(iv), this conditional expectation is the same as 
the unconditional el(pectation in (2.5.3)'. Finally, we recall that En[/(X, Y)) 
must depend on the value of the random variable X, so we replace the dummy 
variable x by the random variable X after g is computed. 

In the context of Example 2.5.2, we can ta.Ice X = Sn, which depends only 
on the first n coin tosses, and take y = ss!l' which depends only on the 
( n + 1 )st coin toss, taking the value u if the { n + 1 )st toss results in a head 
and taking the value d if it results in a tail. We are asked to compute 

We replace X by a dummy variable x and compute 

g(x) = E/(xY) = pf(v.x) + qf(dx). 

Then En[/(Sn+1J = g(Sn)-

PROOF OF LEMMA 2.5.3: Let w1 ... Wn be fixed but arbitrary. By the defini
tion (2.3.6) of conditional expectation, 

En (/(X, Y)](w1 ... wn) 

E f(X(w 1 .. . wn), Y(wn+l · . . wN))p#H(wn+t•••wN)q#T(wn+t•••wN), 

Wn+l··•WN 

whereas 

g(x) = EJ(x, Y) 

- E f(x, Y(wn+l ... WN ))p#H(wn+1- .. WN)q#T(wn+1- .. WN) • 

Wn+l ... Wr,, 

It is apparent that 

□ 
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----Af3(HHH) = 32 

/ 
Af2(H H) = 16 ----A13(H HT) = 16 

AJ1(H) = 8 

~ ----Afa(HTH) = 8 

M2(HT) = 8 ----A,f3(HTT) = 8 

ltfo = 4 

----A1a(THH) = 8 

/ 
Af2(TH) = 4 ----Afa(THT) = 4 

M1(T) = 4 

~ ----Al3(TTH) = 4 

M2(TT) = 4 ----M3(TTT) = 4 

Fig. 2.5.1. The maximum stock price to date. 

Example 2.5.4 (Non-A-larkov process}. In the binomial model of Figure 2.3.1, 
consider the maximum-to-date process }.,f n = maxo<k<n Sk, shown in Figure 
2.5.1. With p = j and q =½,we have - -

2 1 16 4 2 
E2{1\l3](TH) = 31\,f3(THH) + 3AJ3(THT) = 3 + 3 = 63, 

but 
2 1 8 4 

E2{M3](TT) = 3M3(TTH) + 3A1a(TTT) = 3 + 3 = 4. 

Since M2(TH) = 1\/2(IT) = 4, there cannot be a function g such that 
1E3[Afa){TH) = g(1\f2(TH)) and 1E3(.Afa}(TT) = g(1\f2(TT)). The right-hand 
sides would be the same, but the left-hand sides would not. The maximum
to-date process is not Markov because recording only that the value of 
the maximum-to-date at time two is 4, without recording the value of the 
stock price at time two, neglects information relevant to the evolution of the 
maximum-to-date process after time two. □ 

When we encounter a non-Markov process, we can sometimes recover the 
~larkov property by adding one or more so-called state variables. The term 
"state variable'' is used because if we can succeed in recovering the l\,Jarkov 
property hy adrling these variables, we will have determined a way to describe 
the "state" of the market in terms of these variables. This approach to re
covering the Markov property requires that we generalize Definition 2.5.1 to 
multidimensional processes. 
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Definition 2.5.5. Consider the binomial asset-pricing model. Let {(X!, ... , 
X!;); n = 0, 1, ... , N} be a K-dimensional adapted process; i.e., K one
dimensional adapted processes. If, for every n between O and N - 1 and for 
every function f(x 1, ... , xK), there is another function g(x 1, ••• , xK) {depend
ing on n and f) such that 

{2.5.5) 

we say that {(X!, ... , X,!'); n = 0, 1, ... , N} is a K-dimensional Markov pro
cess. 

Example 2.5.6. In an N-period binomial model, consider the two-dimensional 
adapted process { (Sn, Mn); n = 0, 1, ... , N}, where Sn is the stock price at 
time n and Mn= ID8.Xo<k<n Skis the stock price maximum-to-date. We show 
that this two-dimension-;.i process is Markov. To do that, we define y = 5;!1 ' 

which depends only on the ( n + 1 )st coin toss. Then 

and 
Mn+l = Mn V Sn+l = Mn V (SnY), 

where x Vy= max{x, y}. We wish to compute 

According to Lemma 2.5.3, we replace Sn by a dummy variables, replace Mn 
by a dummy variable m, and compute 

g(s, m) = JEJ(sY, m V (sY)) = pf(us, m V (us))+ qf(ds, m V {ds)). 

Then 
En[/{Sn+l, Mn+1)] = g(Sn, Mn). 

Since we have obtained a formula for En[/(Sn+l, .Atfn+1)] in which the only 
randomness enters through the random variables Sn and Mn, we conclude 
that the two-dimensional process is Markov. In this example, we have used the 
actual probability measure, but the same argument shows that {(Sn, Mn); n = 
0, 1, ... , N} is Markov under the risk-neutral probability measure P. □ 

Remark 2. 5. 7. The Markov property, in both the one-dimensional form of Def
inition 2.5.1 and the multidimensional form of Definition 2.5.5, is a "one-step
ahead" property, determining a formula for the conditional expectation of 
Xn+l in terms of Xn. However, it implies a similar condition for any number 
of steps. Indeed, if Xo, Xi, ... , XN is a Markov process and n < N - 2, then 
the "one-step-ahead" Markov property implies that for every function h there 
is a function f such that 
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Taking conditional expectations on both sides baBed on the information at 
time n and using the iterated conditioning property (iii) of Theorem 2.3.3, we 
obtain 

Because of the "one-step-ahead'• Markov property, the right-hand side is 
g(Xn) for some function g, and we have obtained the "two-step-ahead" 
Markov property 

En[h(Xn+2)] = g(Xn)-

lterating this argun1ent, we can show that whenever O < n < m < N and h 
is any function, then there is another function g such that the "multi-step
ahead" Markov property 

(2.5.6) 

holds. Similarly, if {(X! .... , X!f ); n = 1, 2, ... , N} is a K-dimensional Markov 
process, then whenever O < n < m < N and h(xt, ... , xK) is any function, 
there is another function g( x t .... , xK) such that 

(2.5.7) 

□ 

In the binomial pricing model, suppose we have_a Markov process X 0 , X1, 

... , XN under the risk-neutral probability measure P, and we have a derivative 
security whose payoff V N at time N is a function VN of XN, i.e.. VN = 
VN(XN ). The difference between VN and VN is that the argument of the 
former is Wt ... WN, a sequence of coin tosses. whereas the argument of the 
latter is a real number. which we will sometimes denote by the dummy variable 
.r. In particular, there is nothing random about VN(x). However, if in place 
of the dummy variable x we substjtute the random variable XN (actually 
XN(Wt ... WN )), then we have a random variable. Indeed, we have 

VN(Wt .. ,wN) = VN(XN(w1 .. ,wN)) for all w1 •• ,WN. 

The risk-neutral pricing formula (2.4.11) says that the price of this derivative 
security at earlier times n is 

~ [ VN ] Vn ( Wt ••• Wn) = En ( } iV ( W1 ••• Wn) for all C.C..'J • , • W,i. 1 + r , -n 

On the other hand, the "multi-step-ahead"' Atlarkov property implies that there 
is a function Vn such that 

E,. [ {l + ';;N-n] (w1. •. w,.) = ,,,.(X,.(w1 .. . w,.)) for all w1 ... w,.. 

Therefore, the price of the derivative security at time 11 is a function of Xn, 
i.e., 
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Vn = Vn(Xn), 

Instead of computing the random variables Vn, we can cornpute the functions 
Vn, and this is generally much more manageable computationally. In particu
lar, when the Markov process Xo, X1, ... , XN is the stock price itself, we get 
the algorithm (2.5.2). 
_ The same idea can be used for multidimensional Markov processes under 
P. A case of this was Example 1.3.2 of Section 1.3, in which the payoff of a 
derivative security was V3 = M3 - 83, the difference between the stock price 
at time three and its maximum between times zero and three. Because only 
the stock price and its maximum-to-date appear in the payoff, we can use 
the two-dimensional Markov process {(Sn, kin); n = 0, 1, 2, 3} to treat this 
problem, which was done implicitly in that example. 

Here we generalize Example 1.3.2 to an N-period binomial model with 
a derivative security whose payoff at time N is a function VN(SN, l\fN) of 
the stock price and the maximum stock price. (We do not mean that v N 

is necessarily a function of both SN and MN but rather that these are the 
only random variables on which V N depends. For example, we could have 
V N = ( l\.f N - K) +. Even though the stock price does not appear in this 
particular VN, we would need it to execute the pricing algorithm (2.5.9) below 
because the maximum-to-date process is not Markov by itself.) According to 
the "multi-step-head" Markov property, for any n between zero and N, there 
is a (nonrandom) function Vn ( s, m) such that the price of the option at time 
n IS 

~ [VN(SN,MN)] 
Vn = Vn(Sn, Mn) = En (l + r)N-n • 

We can use the Independence Lemma 2.5.3 to derive an algorithm for com
puting the functions Vn. We always have the risk-neutral pricing formula (see 
(2.4.12)) 

1 ~ 
Vn = -1-En[Vn+l] +r 

relating the price of a derivative security at time n to its price at time n + 1. 
Suppose that for some n between zero and N - 1, we have computed the 
function Vn+l such that Vn+l = Vn+1(Sn+l, Mn+1). Then 

1 ~ 
Vn = l En[Vn+l] +r 

1 ~ 
- l En [vn+l (Sn+l, Afn+1)] +r 

l ! r En [ Vn+i ( Sn • Ss: 1 , Mn V ( Sn • Ss: 1 ) ) ) • 

To compute this last expression, we replace Sn and Mn by dummy variables 
s and m because they depend only on the first n tosses. We then take the 
unconditional expectation of 88±1 because it does not depend on the first n 

• n tosses, 1.e., we define 
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( ) 1 ~ [ ( Sn+l ( Sn+l))] 
Vn s, m = l + rIEn Vn+l s • S::' m V s • S:: (2.5.8) 

= 1 ! r [fivn+i(us, ·m V (us))+ ijvn+i(ds, m V (ds)}]. 

The Independence Lemma 2.5.3 asserts that Vn = vn(Sn, l\fn). 
\Ve will only need to know the value of vn(s:m) when m > s since l\fn > 

Sn. We can impose this condition in (2.5.8). But when m > s, if d < l as it 
usually is, we have m V (ds) = m. Therefore, we can rewrite (2.5.8) as 

(2.5.9) 

m > s > 0, n = N - I, N - 2, ... , 0. 

This algorithm works for any derivative security whose payoff at time N de
pends only on the random variables SN and A-f N. 

In Example 1.3.2, we were given that V.1 = v3(s, m), where v3(s, m) = 
m - s. We used (2.5.9) to compute v2, then used it again to compute v1, and 
finally used it to compute v0 . These steps were carried out in Example 1.3.2. 

In continuous time, we shall sec that the analogue of recursive equations 
(2.5.9) are partial differential equations. The process that gets us from the 
continuous-time analogue of the risk-neutral pricing formula to these partial 
differential equations is the Feynman-Kac Theorem. 

We summarize this discussion with a theorem. 

Theorem 2.5.8. Let X0 , X1 , ... , XN be a Markov process under the risk
neutml probability measure P in the binomial model. Let VN(x) be a function 
of the dummy variable x, and consider a derivative security whose payoff at 
time N is v N ( X N). Then, for each n between O and N, the price Vn of this 
derivative security i.'I some function Vn of Xn, i.e., 

(2.5.10) 

There is a recursive algorithm for computing Vn whose exact f onnula depends 
on the underlying Markov process X O, X 1, ... , X N . Analogous results hold if 
the underlying Markov process is multidimensional. 

2.6 Summary 

This chapter sets out the view of probability that begins with a random ex
periment having outcome w. The collection of all possible outcomes is called 
the sample space n, and on this space we have a probability measure JP. When 
{} is finite, we describe P by specifying for each w E n the probability P(w) 
assigned to w by P. A random variable is a function X from n to JR, and 
the expectation of the random variable X is IEX = LwEJ1 X(w)P(w). If we 
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have a second probability measure P on n, then we will have another way 
of computing the expectation, namely EX= Ewen X(w)P(w). The random 
variable X is the same in both cases, even though the two expectations are 
different. The point is that the random variable should not be thought of as a 
distribution. When we change probability measures, distributions ( and hence 
expectations) will change, but random variables will not. 

In the binomial model, we may see coin tosses w1 ... w" and, based on this 
information, compute the conditional expectation of a random variable X that 
depends on coin tosses Wt ... WnWn+I ... WN. This is done by averaging over 
the possible outcomes of the "remaining" coin tosses Wntl ... WN. If we are 
computing the conditional expectation under the risk-neutral probabilities, 
this results in the formula 

En[X)(wt ... Wn) (2.3.6) 

This conditional expectation is a random variable because it depends on the 
first n coin tosses Wt ... Wn• Conditional expectations have five fundamental 
properties, which are provided in Theorem 2.3.2. 

In a multiper,Lod binomial model, a martingale under the risk-neutral prob
ability measure JP> is a sequence of random variables Mo, Mt, ... , MN, where 
each Mn depends on only the first n coin tosses, and 

~ 
Mn(W1 ... Wn) = En[Mn+1](w1 ... Wn) 

no matter what the value of n and no matter what the coin tosses w1 ... Wn are. 
A martingale has no tendency to rise or fall. Conditioned on the information 
we have at time n, the expected value of the martingale at time n + 1 is its 
value at time n. 

Under the risk-neutral probability measure, the discounted stock price is a 
martingale, as is the discounted value of any portfolio that trades in the stock 
and money markets account. In particular, if Xn is the value of a portfolio at 
time n, then 

(1 :~)n = E,. [ (1 :~)N]' O < n < N. 

If we want to have X N agree with the value V N of a derivative security at its 
expiration time N, then we must have 

(1 :~)" = En [(1 !~)N] = En [(1 ::)N] (2.4.9) 

at all times n = 0, l, ... , N. When a portfolio does this, we define the value Vn 
of the derivative security at time n to be Xn, and we thus have the risk-neutral 
pricing formula 
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(2.4.11) 

A Markov process is a sequence of random variables X0 , X1, ... , XN with 
the following property. Suppose n is a time between O and N - 1, we have 
observed the first n coin tosses w1 ... Wn i and we want to estimate either a 
function of Xn+l or, more generally, a function of Xn+k for some k between 1 
and N - n. We know both the individual coin tosses Wt ... Wn and the resulting 
value X n ( w 1 ... Wn) and can base our estimate on this information. For a 
l\farkov process, knowledge of the individual coin tosses (the "path") does 
not provide any information relevant to this estimation problem beyond that 
information already contained in our know ledge of the value X n ( w1 ... Wn). 

Consider an underlying asset-price process Xo, X1, ... , XN that is Markov 
under the risk-neutral measure and a derivative security payoff at time N that 
is a function of this asset price at tirne N; i.e., VN = VN(XN ). The price of 
the derivative security at all times n prior to expiration is a function of the 
underlying asset price at those times; i.e., 

Vn = Vn(Xn), n = 0, 1, ... , N. {2.4.11) 

In this notation, Vn is a random variable depending on the coin tosses 
Wt .. . wn. It is potentially path-dependent. On the other hand, Vn(x) is a 
function of a real number x. When we replace x by the random variable X n, 
then vn(Xn) also becomes random, but in a way that is guaranteed not to 
be path-dependent. Equation (2.4.11) thus guarantees that the price of the 
derivative security is not path-dependent. 

2.7 Notes 

The sample space view of probability theory dates back to Kolmogorov (29], 
who developed it in a way that extends to infinite probability spaces. We take 
up this subject in Chapters 1 and 2 of Volume II. Martingales were invented by 
Doob [13), who attributes the idea and the name "martingale" to a gambling 
strategy discussed by Ville (43]. 

The risk-neutral pricing formula is due to Harrison and Kreps [17] and 
Harrison and Pliska (18]. 

2.8 Exercises 

Exercise 2.1. Using Definition 2.1.1, show the following. 

(i) If A is an event and Ar. denotes its complement, then JP>(Ac) = 1 - l?(A). 
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(ii) If A1, A2, ... , AN is a finite set of events, then 

p (~1 A,.) < f P(A,.). (2.8.1) 

If the events A1,A 2 , ... ,AN are disjoint, then equality holds in (2.8.1). 

Exercise 2.2. Consider the stock price S3 in Figure 2.3.1. 

(i) What is the distribution of S3 under the risk-neutral probabilities p = ½, 
q= j. 

(ii) Compute ES1, ES!, and ES3 . What is the average rate of growth of the 
stock price under P? 

(iii) Answer (i) and (ii) again under the actual probabilities p = j, q = }. 
Exercise 2.3. Show that a convex function of a martingale is a submartin
gale. In other words, let Mo, M 1, ... , MN be a martingale and let f{) be a 
convex function. Shew that f{)(Mo), 'P(Mi), ... , f{)(AIN) is a submartingale. 

Exercise 2.4. Toss a coin repeatedly. Assume the probability of head on each 
toss is ½, as is the probability of tail. Let X; = 1 if the jth toss results in 
a head and X; = -1 if the jth toss results in a tail. Consider the stochastic 
process Mo, Mi, Af2,. . . defined by Mo = 0 and 

n 

Mn= Ex;, n > 1. 
j=l 

This is called a symmetric random walk; with each head, it steps up one, and 
with each tail, it steps down one. 

(i) Using the properties of Theorem 2.3.2, show that M0 , M1, M2, ... is a 
martingale. 

(ii) Let u be a positive constant and, for n > 0, define 

Sn = e" Mn ( 2 ) n . 
eu + e-u 

Show that S0 , S1 , S2 , ... is a martingale. Note that even though the sym
metric random walk Mn has no tendency to grow, t.he "geometric sym
metric random walk" euAln does have a tendency to grow. This is the 
result of putting a martingale into the (convex) exponential function (see 
Exercise 2.3). In order to again have a martingale, we must "discount" the 
geometric symmetric random walk, using the term e" fe-" as the discount 
rate. This term is strictly less than one unless u = 0. 

Exercise 2.5. Let Mo, M1, M2, ... be the symmetric random walk of Exercise 
2.4, and define Io = 0 and 

n-1 

In = E M;(M;+1 - M;), n = 1, 2, ... . 
j=O 
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(i) Show that 
1 2 n 

In = 2 lt/ 11 - 2 . 

(ii) Let n be an arbitrary nonnegative integer, and let /(i) be an arbitrary 
function of a variable i. In terms of n and /, define another function g(i) 
satisfying 

En [f(ln+d] = g(In)-

Note that although the function g(In) on the right-hand side of this equa
tion may depend on n, the only random variable that may appear in its 
argument is In; the random variable Aln may not appear. You will need to 
use the formula in part (i). The conclusion of part (ii) is that the process 
lo, Ii, 12, ... is a l\.1arkov process. 

Exercise 2.6 (Discrete-time stochastic integral). Suppose Alo, Ali, ... , 
Al N is a martingale, and let Llo, Ll 1 , ... , Ll N - I be an adapted process. Define 
the discrete-time stochastic integml (sometimes called a martingale transform) 
10 , Ii: ... , IN by setting Io = 0 and 

n-1 

In= L Llj(Af;+l - :Alj), n = 1, ... : N. 
J=O 

Show that Io, / 1, ... , IN is a martingale. 

Exercise 2. 7. In a binomial 1nodel. give an example of a stochastic process 
that is a martingale but is not h-larkov. 

Exercise 2.8. Consider an N-period binomial model. 

(i) Let l\fo, Aft, ... , l\f N and Af~. 1\/~, ... , 1\/N be martingales under the risk
neutral measure?. Show that if 1\/N = :Al,~ (for every possible outcome 
of the sequence of coin tosses), then. for each n between O and N, we have 
l\ln = l\.l~ (for every possible outcome of the sequence of coin tosses). 

(ii) Let VN be the payoff at time N of some derivative security. This is a 
random variable that can depend on all N coin tosses. Define recursively 
VN-I, VN- 2 , ... , V0 by the algorithm (1.2.16) of Chapter 1. Show that 

V1 VN-1 VN 
Vo, 1 + r ••••• (1 + r)N-1' (1 + r)N 

~ is a martingale under IP. 
(iii) Using the risk-neutral pricing formula (2.4.11) of this chapter, define 

, ~ [ VN ] vn = En (1 + r )N-n • 11 = 0, 1: ••• 'N - 1. 

Show that 
V,I V' ,, 

V,' _1_ N-1 VN 

o, 1 + r: • • ·' (1 + r)N-l' (1 + r)N 

is a martingale. 
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(iv) Conclude that Vn = V~ for every n (i.e., the algorithm (1.2.16) of Theorem 
1.2.2 of Chapter 1 gives the same derivative security prices as the risk
neutral pricing formula (2.4.11) of Chapter 2). 

/ 
S2(HH) = 12 

S1(H) = 8 

/ r1(H) = ¼ ~ S2(HT) = 8 
So= 4 
ro = ¾ 

~ / 
S2(TH) = 8 

S1(T) = 2 
r1(T) = ½ 

~ S2(TT) = 2 

Fig. 2.8.1. A stochastic volatility, random interest rate model. 

Exercise 2.9 (Stochastic volatility, random interest rate). Consider 
a two-period stochastic volatility, random interest ratu model of the type 
described in Exercise 1.9 of Chapter 1. The stock prices and interest rates are 
shown in Figure 2.8.1. 

(i) Determine risk-neutral probabilities 

P(H H), P(HT), P(TH), P(TT), 

such that the time-zero value of an option that pays off V2 at time two is 
given by the risk-neutral pricing formula 

Vo = E [ ( 1 + ro ~( 1 + rJ • 

(ii) Let V2 = (82 - 7)+. Compute Vo, Vi (H), and Vi (T). 
(iii) Suppose an agent sells the option in (ii) for V0 at time zero. Compute the 

position Ll0 she should take in the stock at time zero so that at time one, 
regardless of whether the first coin toss results in head or tail, the value 
of her portfolio is V1 . 

(iv) Suppose in (iii) that the first coin toss results in head. What position 
Ll1 (H) should the agent now take in the stock to be sure that, regardless 
of whether the second coin toss results in head or tail, the value of her 
portfolio at time two will be (S2 - 7)+? 
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Exercise 2.10 (Dividend-paying stock). We consider a binomial asset 
pricing model as in Chapter 1, except that, after each movement in the stock 
price, a dividend is paid and the stock price is reduced accordingly. To describe 
this in equations, we define 

Y, ( ) { u, if Wn+l = H, 
n+l W1 •. ,WnWn+l = d ·r -T 

'1 Wn+l - • 

Note that Yn+I depends only on the (n+ l)st coin toss. In the binomial model 
of Chapter 1, Yn+1Sn was the stock price at time n+l. In the dividend-paying 
model considered here, we have a random variable An+1 (w1 ... WnWn+d, tak
ing values in (0, 1), and the dividend paid at time n + 1 is An+I Yn+1Sn. After 
the dividend is paid, the stock price at time n. + 1 is 

Sn+l = (1 - An+1)Yn+1Sn, 

An agent who begins with initial capital X 0 and at each time n talces a 
position of Lln shares of stock, where Lln depends only on the first n coin 
tosses, has a portfolio value governed by the wealth equation (see (2.4.6)) 

Xn+l = LlnSn+l + (1 + r)(Xn - LlnSn) + LlnAn+1 Yn+1Sn 

= LlnYn+tSn + (1 + r}(Xn - LlnSn), (2.8.2) 

(i) Show that the discounted wealth process is a martingale under the risk
neutral measure (i.e., Theorem 2.4.5 still holds for the wealth process 
(2.8.2)). As usual, the risk-neutral measure is still defined by the equations 

_ l+r-d 
p=--

u-d ' 
_ u-1-r 
q=---. 

u-d 

(ii) Show that the risk-neutral pricing formula still applies (i.e., Theorem 
2.4. 7 holds for the dividend-paying model). 

(iii) Show that the discounted stock price is not a martingale under the risk
neutral measure (i.e., Theorem 2.4.4 no longer holds). However, if An+l 
is a constant a E (0, 1), regardless of the value of n and the outcome of 
the coin tossing w1 .. ,Wn+1, then (l-a)~(l+r)" is a martingale under the 
risk-neutral measure. 

Exercise 2.11 (Put-call parity). Consider a stock that pays no dividend 
in an N-period binomial model. A European call has payoff C N = (SN - K) + 
at time N. The price Cn of this call at earlier times is given by the risk-neutral 
pricing formula (2.4.11): 

C,. = £,. [ (l+ ~)N-n] , n = 0, 1, . .. , N - 1. 

Consider also a put with payoff PN = (K - SN)+ at time N, whose price at 
earlier times is 
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Pn = En [c1 +p:iN-n], n = 0, 1, •.. ,N-1. 

Finally, consider a forward contract to buy one share of stock at time N for 
K dollars. The price of this contract at time N is FN = SN - K, and its price 
at earlier times is 

~ [ FN ] Fn = En (l + r)N-n , n = O, 1, ... , N - 1. 

(Note that, unlike the call, the forward contract requires that the stock be 
purchased at time N for K dollars and has a negative payoff if SN < K.) 

(i) If at time zero you buy a forward contract and a put, and hold them until 
expiration, explain why the payoff you receive is the same as the payoff 
of a call; i.e., explain why CN = FN + PN. 

(ii) Using the risk-neutral pricing formulas given above for Cn, Pn, and Fn 
and the linearity of conditional expectations, show that Cn = Fn + Pn for 
every n. 

(iii) Using the fact that the discounted stock price is a martingale under the 
risk-neutral measure, show that Fo = So - (l:,.)N. 

(iv) Suppose you begin at time zero with F0 , buy one share of stock, borrowing 
money as necessary to do that, and make no further trades. Show that 
at time N you have a portfolio valued at FN. (This is called a static 
replication of the forward contract. If you sell the forward contract for 
F0 at time zero, you can use this static replication to hedge your short 
position in the forward contract.) 

( v) The forward price of the stock at time zero is defined to be that value of 
K that causes the forward contract to have price zero at time zero. The 
forward price in this model is (1 + r)N S0 . Show that, at time zero, the 
price of a call struck at the forward price is the same as the price of a put 
struck at the forward price. This fact is called put-call parity. 

(vi) If we choose K = (1 + r)N S0 , we just saw in (v) that C0 = P0 . Do we 
have Cn = Pn for every n? 

Exercise 2.12 (Chooser option). Let 1 < m < N -1 and K > 0 be given. 
A chooser option is a contract sold at time zero that confers on its owner the 
right to receive either a call or a put at time m. The owner of the chooser may 
wait until time m before choosing. The call or put chosen expires at time N 
with strike price K. Show that the time-zero price of a chooser option is the 
sum of the time-zero price of a put, expiring at time N and having strike price 
K, and a call, expiring at time m and having strike price (l+r)N- .... (Hint: 
Use put-call parity (Exercise 2.11).) 

Exercise 2.13 (Asian option). Consider an N-period binomial model. An 
Asian option has a payoff based on the average stock price, i.e., 



60 2 Probability Theory on Coin Toss Space 

where the function / is determined by the contractual details of the option. 

(i) Define Yn = E;=O Sk and use the Independence Lemma 2.5.3 to show 
that the two-dimensional process (Sn, Yn), n = 0, 1, ... , N is l\1arkov. 

(ii) According to Theorem 2.5.8, the price Vn of the Asian option at time n is 
some function Vn of Sn and Yn; i.e., 

Give a formula for VN(s, y), and provide an algorithm for computing 
Vn(s, y) in terms of Vn+I• 

Exercise 2.14 (Asian option continued). Consider an N-period binomial 
model, and let M be a fixed number between O and N - 1. Consider an Asian 
option whose payoff at time N is 

where again the function / is determined by the contractual details of the 
option. 

(i) Define 
Y. _ { 0, if 0 < n < M, 

n - E;=M + 1 sk ~ if M + 1 < n < N. 

Show that the two-dimensional process (Sn, Yn), n = 0, 1, ... , N is t..farkov 
(under the risk-neutral measure?). 

(ii) According to Theorem 2.5.8, the price Vn of the Asian option at time n is 
some function Vn of Sn and Yn, i.e., 

Of course, when n < Al, Yn is not random and does not need to be 
included in this function. Thus, for such n we should seek a function Vn 

of Sn alone and have 

Give a formula for VN(s, y), and provide an algorithm for computing Vn in 
terms of Vn+l· Note that the algorithm is different for n <Aland n > M, 
and there is a separate transition formula for VAf(s) in terms of VA1+1(·, ·). 
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State Prices 

3.1 Change of Measure 

In the binomial no-arbitrage pricing model of Chapter 1 and also in the 
continuous-time models formulated in Chapters 4 and 5 of Volume II, there 
are two probability measures that merit our attention. One is the actual prob
ability measure, by which we mean the one that we seek by empirical es
timation of the model parameters. The other is the ri.-ik-neutral probability 
measure, under which the discounted prices of assets are martingales. These 
two probability measures give different weights to the asset-price paths in 
the model. They agree, however, on which price paths are possible (i.e., which 
paths have positive probability of occurring); they disagree only on what these 
positive probabilities are. The actual probabilities are the "right" ones. The 
risk-neutral probabilities are a fictitious but helpful construct because they 
allow us to neatly summarize the result of solving systems of equations (see, 
e.g., the system (1.1.3), (1.1.4) of Chapter 1, which leads to the formula (1.1.7) 
of that chapter). 

Let us more generally consider_ a finite sample space fJ on whl_ch we have 
two probability measures 1P and P. Let us assume that. JP> and JP> both give 
positive probability to every element of n, so we can form the quotient 

P(w) 
Z(w) = P(w)" (3.1.1) 

Because it depends on the outcome w of a random e~ri!!}ent, Z is a random 
variable. It is called the Radon-Nikodym derivative of P with respect to P, 
although in this context of a finite sample space fl, it is really a quotient rather 
than a derivative. The random variable Z has three hnportant properties, 
which we state as a theorem. 

~ Theorem 3.1.1. Let P and P be _probability measures on a finite sample space 
fl, assume that P( w) > 0 and P( w) > 0 for every w E fl, and define the 
mndom variable Z by (3.1.1}. Then we have the following: 
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{i) P(Z > 0) = 1; 
(ii) JEZ= 1: 
(iii) for any mndom variable Y, 

EY = E[ZY). (3.1.2) 

~ROOF: Property (i) follows immediately from the fact that we have assumed 
JP(w) > 0 for every w En. Property (ii) can be verified by the computation 

JEZ= L Z(w)ll'(w) = L !t!P(w) = L fii(w) = 1, 
wen wen wen 

~ 
the last equality following from the fact that IP is a probability measure. The 
following similar computation verifies property (iii): 

iY = L Y(w)P(w) = L Y(w)!t!ll'(w) 
wEU wen 

= L Y(w)Z(w)JP(w) E[ZY). □ 
wen 

~ 
Ss(HHH) = 32 

S2(HH) = 16 

/ ~ -
Si(H) = 8 ~ S3(HHT) - Sa(HTH) 

/ "' /=Ss(THH)=8 

So= 4 S2(HT) = S2(TH) = 4 

"' / "' Si(T) = 2 ~ 83(HTT) = 83(THT) 

"' ~ = S3(TTH) = 2 

S2(TT) = 1 

~ S3(1TI') = .50 

Fig. 3.1.1. A three-period model. 

Example 3.1.2. Consider again the three-period model of Figure 3.1.1. The 
underlying probability space is 

n = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}. 
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We take p = I as the actual probability of a head and q = l as the actual 
probability of a tail. Then the actual probability measure is 

8 
P(HHH) = 27, 

4 4 2 
P(HHT) = 27, P(HTH) = 27, P(HTT) = 27, 

4 
P(THH) = 27, 

2 2 1 
P(T HT) = 27, P(TT H) = 27, P(TTT) = 27 · 

(3.1.3) 
We take the interest rate to be r = ¼, and then the risk-neutral probability 
of a head is p = ½ and the risk-neutral probability of a tail is q = ½. The 
risk-neutral probability measure is 

- 1 - 1 - 1 JP(HHH) = 8, P(HHT) = 8, P(HTH) = 8, 

- 1 - 1 - 1 P(THH) = 8, P(THT) = 8, P(TTH) = 8, 

- 1 P(HTT) = 8, 

- 1 
P{TTT) = 8. 

(3.1.4) 

Therefore, the Radon-Nikodym derivative of P with respect to P is 

ff ff ff ff 
Z(HHH) = 64, Z(HHT) = 32, Z(HTH) = 32, Z(HTT) = 16, 

Z(THH) = ::, Z(THT) = :!, Z(TTH) = :!, Z(TTT) = 2;. 
(3.1.5) 

In Example 1.2.4 of Chapter 1, for this model we determined the time-zero 
price of a lookba.ck option whose payoff at time three was given by 

Va(HHH) = 0, Va(HHT) = 8, V3(HTH) = 0, V3(HTT) = 6, 

Va(THH) = 0, V3(THT) = 2, V3(TTH) = 2, V.,(TTT) = 3.50. 

According to the risk-neutral pricing formula (2.4.11) of Chapter 2, this time
zero value is 

~ V3 
Vo= E(l +r)3 

= (i)3 L Va(w)P(w) 
well 

[ 1 1 1 1 1 1 1 1] = 0 512 0 • - + 8 • - + 0 • - + 6 • - + 0 • - + 2 • - + 2 • - + 3 50 • -• 8 8 8 8 8 8 8 • 8 
= 1.376, (3.1.6) 

which is the number determined in Example 1.2.4 of Chapter 1 to be the cost 
at time zero of setting up a replicating portfolio. Using the random variable 
Z, we can rewrite (3.1.6) es 
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V3Z 
Vo= E(l +r)3 

= ( ~) 3 L Va(w)Z(w)P(w) 
wen 

= o.512 [o. 27 . ~ + s. 27 . _! + o. 27 . _! + 6. 27 . ~ 
64 27 32 27 32 27 16 27 

+o . 27 . _! + 2 . 27 . 2 + 2 . 27 . 2 + 3.50 . 27 . __!_] 
32 27 16 27 16 27 8 27 

= 1.376, (3.1.7) 

The advantage of (3.1.7) over (3.1.6) is that (3.1.7) makes no reference to 
the risk-neutral measure. However, it does not simply compute the expected 
discounted payoff of the option under the actual probability measure but 
rather first. weights these payoffs using the random variable Z. This leads to 
the idea of state prices, which we formalize in the next definition. □ 

Definition 3.1.3. In the N -period binomial m2del with actual probability 
measure f and risk-ne_!!,tral probability measure IP, let Z denote the Radon
Nikodym derivative of IP with respect to JP; i.e., 

( ) u: Wt ... W N p q im( ) (-) #H(w1 ••• WN) (-) #T(w1---WN) 

Z Wt ••• W N = JP( ) = - - ' 
Wt .. ,WN p q 

(3.1.8) 

where #H(wt ... WN) denotes the number of heads appearing in the sequence 
Wt ... WN and #T(wt ... WN) denotes the number of tails appearing in this 
sequence. The state price density mndom variable is 

Z(w) 
((w) = (1 + r)N' 

and ((w)JP(w) is called the state price corresponding tow. 

(3.1.9) 

Let w = w1 ... w N be a particular coin toss sequence in the N-period 
model, and consider a derivative security that pays off 1 if w occurs and 
otherwise pays off O; i.e .. 

V ( ) { I. if w = w. 
N w = 0, otherwise. 

According to the risk-neutral pricing formula, the value of this derivative 
security at time zero is 

E VN = JP(w) = Z(w)JP(w) = ((w)f(w). 
(1 + r)N (1 + r)N (1 + r)N 

We see that the st.ate price ((w)f(w) tells the price at time zero of a contract 
that pays 1 at time N if and only if w occurs. This price should include a 



3.2 Radon-Nikodym Derivative Process 65 

discount from time N to time zero to account for the time value of money, 
and the term (l+ 1r)N does indeed appear in (3.1.9). It is natural to expect 
the price to take into account the probability that w will occur, and therefore 
we have arranged the formulas so that JP( w) is one of the factors in the state 
price. However, these two factors alone cannot tell the whole story because 
they do not account for risk. If we were to use these terms alone, and take 
the time-zero price of a derivative security to be IE(1~~)N, then the time
zero price of an asset would depend only on its expected return under the 
actual probability measure. In fact, the price of an asset depends on both its 
expected return and the risk it presents. The remaining term appearing in 
the state price corresponding tow, Z(w), accounts for risk. For example, in 
(3.1.5) we see that Z discounts the importance of the stock price paths that 
end above the initial stock price S0 = 4 because Z < 1 whenever there are 
two or three heads in the three coin tosses, but Z inflates the importance of 
the stock price paths that end below the initial stock price. The effect of this 
is to make holding the stock appear less favorable than one would infer from 

simply computing IE ( ( i) 3 Sa] , its discounted expected value at time three. 

The state price ((w)P(w) tells us the time-zero price of a contract that 
pays 1 at time N if and only if w occurs. The state price density < 1~~>N tells 
us the time-zero price of this contract per unit of actual probability. For this 
reason, we call it a density. 

Of course, most contracts make payoffs for several different values of w, 
and these payoffs are not all necessarily 1. Such a contract can be regarded 
as a portfolio of simple contracts, each of which pays off 1 if and only if some 
particular w occurs, and their prices can be computed by summing up the 
prices of these components. To see this, recall from (2.4.11) of Chapter 2 
the risk-neutral pricing formula Vo = E( 1~~)N for the time-zero price of an 
arbitrary derivative security paying V N at time N. In terms of the state price 
density, this can be rewritten sirnply as 

Vo= IE[(VN) = L VN(w)((w)JP(w). (3.1.10) 
wen 

Equation (3.1. 7) is a special case of this, where the (("-') term is separated 
into its factors (l;r) 3 and Z(w). 

3.2 Radon-Nikodym Derivative Process 

In the previous section, we considered the Radon-Nikodym derivative of the 
risk-neutral probability measure with respect to the actual probability mea
sure in an N-period binomial model. This random variable Z depends on the 
N coin tosses in the model. To get related random variables that depend on 
fewer coin tosses, we can estimate Z based on the information at time n < N. 
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This procedure of estimation will occur in other contexts as well, and thus 
we give a general result that does not require that Z is a Radon-Nikodym 
derivative. 

Theorem 3.2.1. Let Z be a mndom variable in an N-period binomial model. 
Define 

Zn=EnZ, n=0.1, ... ,N. (3.2.1) 

Then Zn, n = 0. 1, ... , N. is a martingale under JP. 

PROOF: For n = 0, 1. ... , N - 1, we use the "iterated conditioning" property 
of Theorem 2.3.2(iii) of Chapter 2 to compute 

This shows that Zn, n = 0, 1, ... , N is a martingale. □ 

Remark 3.2.2. Although Theoren1 3.2.1 is stated for the probability measure 
!E, the analogous theorem is true under the risk-neutral probability measure 
P. The proof is the same. □ 

When successive estimates of a random variable are made, the estimates be
come more precise with increasing time (and information). However, Theorem 
3.2.1 says they have no tendency to rise or fall. If a later estimate were on av
erage higher than an earlier estimate, this tendency to rise would have already 
been incorporated into the earlier estimate. This is similar to the situation 
with an efficient stock market.. If a stock were known to outperform other 
stocks having the same level of risk, this fact would have already been incor
porated into the current price of the stock and thereby raise it to the point 
where the superior performance was no longer possible. 

Example 3.2.8. Consider the t.hree-perio<l model of Exame!e 3.1.2. In that 
example, we determined the Radon-Nikodym derivative of P with respect to 
P to be given by (3.1.5). For n = 0, 1. 2, 3, we define Zn = 1En[Z). In particular, 
Z3(w1w2w3) = Z(w1w2w3) for all w1w2w3. \Ve compute 

2 1 9 
Z2(HH) = 3Z3(HHH) + 3Z3(HHT} = 16, 

2 1 9 
Z2(HT) = 3Z3(HTH) + 3Z2(HTT) - 8, 

2 1 9 
Z2(TH) = 3z3(THH) + 3Z2(THT) = 8. 

Z2(TT) = ~Z2(TTH) + ~Z 2 (TTT) - ~-

According to its definition, Z1 = E1 [Z], but Theorem 3.2.1 allows us to com
pute it using the martingale formula Z1 = Ei(Z 2). This leads to the equations 



3.2 Radon-Nikodym Deriv-ative Process 67 

~Za(HHH) = :! 

~ Za(TTT) = 2; 

Fig. 3.2.1. A Radon-Nikodym derivative process. 

2 1 3 
Z1(H) = 3Z2(HH) + 3Z2(HT) = 4, 

2 1 3 
Z1(T) = 3Z1(TH) + 3Z1(TT) = 2. 

According to its definition, Zo = EZ, which must be 1 because of Theorem 
3.1.l(ii). We can also compute it using the martingale fonnula Zo = Eo(Z1] = 
EZ1, and this leads to 

The process Zn, n = 0, 1, 2, 3, is shown in Figure 3.2.1. □ 

Definition 3.2.4. In an N -period binomial model, let 1P be the actual probabil
ity "!_easure, P the risk-neutral probability measure, and assume that JP( w) > 0 
and JP(w) > 0 /or every sequence of coin tosses w. Define the Radon-Nikodym 

derivative (random variable} Z(w) = ;~:~ for every w. The Radon-Nikodym 
derivative process is 

Zn = En[Z], n = 0, 1, ... , N. (3.2.2) 

In particular, ZN = Z and Zo = 1. 

In the context of Definition 3.2.4, we can compute the risk-neutral expectation 
of a random variable Y by computing under the actual probability measure 
the expectation E(ZY]. If Y only depends on the first n coin tosses, where 
n < N, this computation can be simplified further. 
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Lemma 3.2.5. Assume the conditions of Definition 3.2.,4. Let n be a positive 
integer between O and N. and let Y be a mndom variable depending only on 
the first n coin tosses. Then 

(3.2.3) 

PROOF: We use Theorem 3.1.l(iii) of this chapter, Theorem 2.3.2(iii) of Chap
ter 2 (iterated conditioning), Theorem 2.3.2(ii) of Chapter 2 (talcing out what 
is known), and the definition of Zn, in that order, to justify each of the fol
lowing steps: 

An illuminating application of Lemma 3.2.5 occurs if we fix a sequence of 
n coin tosses, w1 ... Wn, and define 

In other words, Y takes the value 1 if and only if the first n coin tosses result 
in the particular sequence w 1 ... Wn we have fixed in advance. The coin tosses 
Wn+i ... WN are irrelevant. Then 

EY = P{The first n coin tosses result in Wt ... Wn} 

= p#H(w1 ... wn)q#T(w1,,.wn), 

where the notation #H(· ••)and #T(· ··)is explained in Definition 3.1.3. On 
the other hand, 

E(Y Zn) = Zn (w1 ... Wn }P{The first n coin tosses result in Wt ... wn} 
- z (w w )p#H(wi ... w,, )q#T(w 1 ••• w") 
- n 1••• n • 

Lemma 3.2.5 asserts that these two quantities are equal, and hence 

(3.2.4) 

This can be verified in Figure 3.2.1. For example, in that figure we have 

and 

9 
16 
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We see that, for each n, Zn(w1 ... wn) is the ratio of the risk-neutral probability 
and the actual probability of obtaining the sequence of coin tosses w1 ... Wn. 

Lemma 3.2.5 asserts that if Y depends only on the first n coin tosses, then 
we do not need to consider the coin tosses after time n. \Ve may use Z,. as a 
surrogate for the Radon-Nikodym derivative Z in the formula EY = JE[ZY] of 
Theorem 3.1.l(iii), and Z,. is computed just like Z, except that Z,. is a ratio 
of probabilities for the first n coin tosses rather than all N tosses. _ 

In addition to relating expectations under the two measures P and P, we 
want to have a formula relating conditional expectations under these mea
sures. This is provided by the following lemma. 

Lemma 3.2.6. Assume the conditions of Definition 9.!.,I. Let n < m be posi
tive integers between O and N, and let Y be a random variable depending only 
on the first m coin tosses. Then 

- 1 
E,.[Y] = Zn En(ZmY]. 

PROOF: Let W1 ••. Wn be given. We compute 

En [Y) (w1 ... w,.) 

_ E Y(wi ... Wm)P#H(wn+1 .. ,w,n)q#T(wn+1•••"'m) 

1 ------
Z(w1 ... w,.) 

(3.2.5) 

L Y(wi ... Wm)Zm(wi ... wm)P#H( 111n+i .. •111m)q#T(wn+1•••"'m) 

□ 

We are now in a position to give a variety of formulations of the risk-neutral 
pricing formula. 

Theorem 3.2. 7. Consider an N -period binomial model with O < d < 1 + r < 
u. Assume that the actual probability for head, p, and the actual probability for 
tail, q, are positive. The risk-neutral probabilities for head and tail are given, 
as usual, by 
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p= 
I+r-d 

tt - d ' 

_ u-l-1· 
q=---. 

u-d 
~ 

and these also are both positive. Let P and P denote the corresponding ac-
tual and risk-neutral p!_·obability measures. respectively, let Z be the Radon
Nikodym derivative of P with respect to P, and let Zn, n = 0, 1, ... , N, be the 
Radon-Nikodym derivative process. 

Consider a derivative security whose payoff VN may depend on all N coin 
tosses. For n = 0, 1, ... , N, the price at time n of this derivative security is 

(3.2.6) 

where the state price density process (n is defined by 

Zn 
(n = (l+r)n' n=0,1, ... ,N. (3.2.7) 

PROOF: The first equality in (3.2.6) is (2.4.11) of Chapter 2. The second 
equality follows from Lemma 3.2.6. The third is just a matter of definition of 
(n, D 

3.3 Capital Asset Pricing Model 

The no-arbitrage pricing methodology of this text is one of two different ways 
of modeling prices of assets. The other, the capital asset pricing model, is based 
on balancing supply with demand among investors who have utility functions 
that convert units of consumption to units of satisfaction. The capital as
set pricing model provides useful qualitative insights into markets but does 
not yield the precise quantitative results available through the no-arbitrage 
methodology. :Moreover. in an idealized complete rnarket, the no-arbitrage ar
gument is compelling. On the other hand, many markets are incomplete, and 
prices cannot be determined from no-arbitrage considerations alone. Utility
based models are still the only theoretically defensible way of treating such 
markets, although there is a widespread practice of using "risk-neutral" pric
ing, even when the assets being priced cannot be replicated by trading in 
other i more primitive assets. 

This text is about no-arbitrage pricing in complete markets and the math
ematical methodology that supports this point of view. The mathematical 
methodology, however, is broadly applicable. In this section, we show how it 
can be brought to bear on a problem at the heart of the capital asset pricing 
model, that of maximizing the expected utility obtained from investment. 

ln no-arbitrage pricing, there are two probability measures, the actual 
probability measure and the risk-neutral measure. When pricing derivative 
securities, we need only consider the risk-neutral measure. There are, however, 
two situations in which the actual probability measure becomes relevant: asset 
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management and risk management. In asset management, one cares about 
the trade-off of risk and actual (rather than risk-neutral) expected return. 
In risk management, one cares about the actual probability of a catastrophic 
event. In both of these situations, however, there is a role for the risk-neutral 
probability measure. For risk management, the portfolio whose risk is being 
MseSsed normally contains derivative securities whose theoretical prices under 
various scenarios must be computed using the risk-neutral measure. For asset 
management, the risk-neutral measure enters in the manner set forth in this 
section. 

We now set out the capital asset pricing problem. By a utility function 
we shall mean a nondecreasing, concave function defined on the set of real 
numbers. This function may take the value -oo, but not the value +oo. A 
common utility function is In x, which is normally defined only for x > 0. We 
adopt the convention that In x = -oo for x < 0, so this is defined for every 
x E R and is nondecreasing and concave. Recall that a function U is concave 
if 

U(ax + (1 - a)y) > aU(x) + (1 - a)U(y) for every x. y ER, a E (0, 1). 
(3.3.1) 

We say U is strictly concave if the inequality in (3.3.1) is strict whenever 
xi= y, and in fact we shall assume that U is strictly concave everywhere it is 
finite. A whole class of utility functions can be obtained by first choosing a 
number p < 1, pi= 0, and another number c ER, and defining 

! (x - c)P if X > C p ' , 

0, if O < p < 1 and x = c, 
-oo, if p < 0 and x = c, 
-00, if X < C. 

For these functions, the index of absolute risk aversion - c:_;:g/ is the hyper

bolic function !=~ for x > c. This class of functions is called the HARA 
(hyperbolic absolute risk aversion) class. The HARA function corresponding 
top= 0 is 

Uo(x) = { ln(x - c), ~f x > c, 
-00, If X < C. 

Concavity of utility functions is assumed in order to capture the trade
off between risk and return. For example, consider a gamble which pays off 1 
with probability ½ and 99 with probability½- The expected payoff is 50, but a 
risk-averse agent would prefer to have 50 rather than the random payoff of the 
gamble. Let X denote this random payoff, i.e., JP(X = l} = JP(X = 99) = ½· 
For a concave utility function, we have from Jensen's inequality used upside 
down (Theorem 2.2.5 of Chapter 2) that EU(X) < U(EX). Indeed, if U(x} = 
In x, then E In X = 2.30 and In EX = 3.91. If we model agent behavior as 
maximization of expected utility of payoff, our model would indicate that an 
agent would prefer the nonrandom payoff JEX = 50 over the random payoff X. 
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By comparing expected utility of payoffs rather than expected payoffs, and 
choosing the utility function judiciously. we can capture an investor's attitude 
toward the trade-off between risk and return. 

Let us consider an N-period binomial model with the usual parameters 
0 < d < 1 + r < u. An agent begins with initial wealth X0 and wishes to invest 
in the stock and the money market account so as to maximize the expected 
utility of his wealth at time N. In other words, the agent has a utility function 
U and wishes to solve the following problem. 

Problem 3.3.1 (Optimal investment). Given X0 , find an adapted port
folio process Llo, Ll1, ... , LlN-1 that maximizes 

(3.3.2) 

subject to the wealth equation 

Note that the expectation in (3.3.2) is computed using the actual probability 
measure JP. The agent. is risk-averse and uses his utility function U to capture 
the trade-off between actual risk and actual return. It does not make sense to 
do this under the risk-neutral measure because under the risk-neutral measure 
both the stock and the money_ market account have the same rate of return; 
an agent seeking to maximize EU(X) would invest only in the money market. 

So= 4 

Fig. 3.3.1. A two-period model. 

Example S.3.2. Consider the two-period model of Figure 3.3.1, in which the 
interest rate is r = ¼, so the risk-neutral probability measure is 
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- 1- 1- 1~ 1 
P{HH) = 4, IP'(HT) = 4, P{TH) = 4, P(TT) = 4. 

Assume the actual probability measure is 

4 2 2 1 
P(HH) = 9, IP'(HT) = 9, P(TH) = 9, P(TT) = 9. 

Consider an agent who begins with X 0 = 4 and wants to choose Llo, Ll1(H) 
and Ll1 (T) in order to maximize E In X 2 . Note that 

and 

Therefore, 

ElnX2 

5 
X1(H) = 8Llo + 4(4 - 4Llo) = 3Llo + 5, 

5 
X1(T) = 2Llo + 4(4 - 4Llo) = -3Llo + 5, 

5 
X2(HH) = l6Ll1(H) + 4{X1(H) - 8Ll1(H)) 

15 25 = 6Ll1(H) + 4 Llo + 4 , 
5 

X2(HT) = 4Ll1(H) + 4(X1(H) - 8Ll1(H)) 

15 25 
= -6Ll1(H) + 4 Llo + 4 , 

5 
X2(TH) = 4Ll1(T) + 4(X1(T) - 2Ll1(T)) 

3 15 25 = 2 Ll1 (T) - 4 Llo + 4 , 
5 

X2(TT) = Ll1(T) + 4(X1(T) - 2Ll1(T)) 

3 15 25 
= - 2Ll1(T) - 4 Llo + 4 . 

4 ( 15 25) 2 ( 15 25) = - In 6Ll1(H) + -Llo + - + -In -6Ll1(H) + -Llo + -
9 4 4 9 4 4 

(3.3.3) 

(3.3.4) 

(3.3.5) 

(3.3.6) 

2 (3 15 25) 1 ( 3 , 15 25) +- In -Ll1(T) - -Llo + - + -In --Ll1(T) - -Llo + -9 2 4 4 9 2 4 4. 

The goal is to maximize this last expression. Toward this end, we compute 
the partial derivatives 
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a 4 15 1 2 15 1 
8Llo ElnX 2 = 9. 4. X2(HH) + 9. 4. X2(HT) 

2 15 1 l 15 1 --·-·-----·-·---
9 4 X2(T H) 9 4 X 2 (TT) 

5( 4 2 2 1) 
= 12 X2(HH) + X2(HT) - X2(TH) - X2(TT) ' 

a 4 6 2 6 
8Ll 1 (H) E In X2 = 9 • X2(H H) 9 X2(HT) 

= ~ (x2(~H) - X2(~T))' 

a 23 1 13 1 
8L11(T)ElnX 2 = 9. 2. X2(TH) - 9. 2. X2(TT) 

= i (x2(~H) - X2(~)). 

Setting these derivatives equal to zero, we obtain the three equations 

4 2 2 1 
X2(H H) + X2(HT) = X2(T H) + X2(TT) 1 

2 1 
X2(H H) X2(HT)' 

2 1 
X2(TH) .X:2(TT). 

We can cross multiply in (3.3.8) and (3.3.9) to obtain 

X2(H H) = 2X2(HT), 

X2(TH) = 2X2(TT). 

(3.3.7) 

(3.3.8) 

(3.3.9) 

(3.3.10) 

(3.3.11) 

Substituting these equations into ( 3.3. 7) and again cross multiplying, we ob
tain a third equation: 

(3.3.12) 

This gives us the three linear equations (3.3.10)-(3.3.12) in the four unknowns 
X2(HH), X2(HT), X2(TH). and X2(TT). 

One way to conclude is to recall the formulas (3.3.3)-(3.3.6) for X 2 (HH), 
X2(HT), X2(TH), and X2(TT) in terms of the three unknowns Lli(H), 
Ll1(T), and Llo, substitute, and solve the resulting three linear equations in 
three unknowns. This will lead to the solutions 

5 
Llo = -. 

9 
25 25 

Ll1(H) = 54, Ll1(T) = 27. (3.3.13) 

We have found the optimal portfolio, but the method we have used is not 
very pleasant. In particular, as the number of periods increases, the number 
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of variables .dn ( w) grows exponentially, and in the last step we solved a system 
of linear equations in these variables. 

An alternative way to conclude is to seek a fourth equation involving 
X 2(H H), X 2(HT), X 2(T H), and X 2(TT) to go with the three equations 
(3.3.10)-(3.3.12) and then solve these four equations in four unknowns. Such 
a fourth equation is provided by Corollary 2.4.6 of Chapter 2, which in this 
context says 

(3.3.14) 

It is now a straightforward matter to solve (3.3.10)-(3.3.12) and (3.3.14) to 
obtain 

100 50 50 25 
X2(HH) = 9 , X2(HT) = 9 , X2(TH) = g' X2(TT) = 9 . (3.3.15) 

We can then find .d1 (H), L11 (T), and .do by the algorithm of Theorem 1.2.2 
of Chapter 1. In particular, 

.di (H) = X2(H H) - X2(HT) 
S2(HH) - S2(HT) 

Lli(T) = X2(TH) - X2(TT) 
S2(T H) - S2(TT) 

25 
= 27' 

4 [1 1 ] 20 X1(H) = 5 2X2(HH) + 2X2(HT) = 3 , 

X1(T) = ~ [~x2(TH) + ~X2(TT)] = ~o, 

.do= X1(H) - X1(T) 
Si(H) - Si(T) 

(3.3.16) 

□ 

The second method of concluding the preceding example used equation 
(3.3.14), which follows from the fact that the expected discounted value of a 
portfolio process under the risk-neutral measure is always equal to the initial 
value X0 (see Corollary 2.4.6 of Chapter 2). In general, 

~ XN 
E(l + r)N = Xo. (3.3.17) 

This equation introduces the risk-neutral measure to the solution of Problem 
3.3.1, even though only the actual probability meaaure appears in the state
ment of the problem. This suggests that we might replace Problem 3.3.1 by 
the following problem. 

Problem 3.3.3. Given X0 , find a random variable XN (without regard to a 
portfolio process) that maximizes 
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(3.3.18) 

subject to 
~ XN 
E(l + r)N = Xo. (3.3.19) 

Lemma 3.3.4. Suppose .do, .di, ... , LlN-l is an optimal portfolio process for 
Problem 3.3.1. and XN is the corresponding optimal wealth mndom variable 
at time N. Then XN is optimal /or Problem 3. 3. 3. Conversely, suppose XN is 
optimal for Problem 3. 3. 3. Then there is a port/ olio process L10, .di, ... , .d N - i 

that starts with initial wealth X0 and has value XN at time N, and this port
/ olio process is optimal for Problem 3. 3.1. 

PROOF: Assume first that L10. L1i ..... L1iv_1 is an optimal portfolio process 
for Problem 3.3.1, and XN is the corresponding optimal wealth random vari
able at time N. To show that XN is optimal for Problem 3.3.3, we mm;t 
show that it satisfies the constraint (3.3.19) and that EU(XN) < EU(XN) 
for any other X N that satisfies this constraint. Because it is generated by a 
portfolio starting with initial wealth Xo, the random variable XN satisfies 
(3.3.17), which is (3.3.19). Now let XN be any other random variable satisfy
ing {3.3.19). We may regard XN as a derivative security, and according to the 
risk-neutral pricing formula (2.4.11) of Chapter 2, the time-zero price of this 
derivative security is X0 appearing in (3.3.19). In particular, beginning with 
initial wealth Xo, we may construct a portfolio process L11• L12, ... , .dN-l that 
replicates XN (i.e .. for which the value of the portfolio process at time N is 
XN ). (See Theoren1 1.2.2 of Chapter 1 for the details.) Since XN is an opti
mal final portfolio random variable for Problem 3.3.1 and XN is another final 
portfolio random variable, we must have EU(XN) < EU(XN ). This shows 
that XN is optimal for Problem 3.3.3. 

For the converse, suppose XN is optimal for Problem 3.3.3. Again using 
Theorem 1.2.2 of Chapter 1, we may construct a portfolio process .do, .dj .... , 
.dN-l that begins with initial wealth .,Yo and whose value at time N is XN. Let 
.do, L11, ... , .dN-l be another portfolio process, which, starting with initial 
wealth X0 , leads to some wealth XN at time N. To show that Xi,, is optimal 
in Problem 3.3.1, we must show that 

(3.3.20) 

But XN satisfies (3.3.17), which is (3.3.19), and Xi,, is optimal for Problem 
3.3.3. This implies (3.3.20) and establishes the optimality of Xi,, in Problem 
3.3.1. □ 

Lemma 3.3.4 separates the optimal investment problem, Problem 3.3.1, 
into two manageable steps: first, find a random variable XN that solves Prob
lem 3.3.3; and second, construct the portfolio that starts with X0 and repli
cates XN, The second step uses the algorithm of Theorem 1.2.2 of Chapter 1. 
It remains only to figure out how to perform the first step. Before giving the 
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general method, we examine Problem 3.3.1 within the context of Example 
3.3.2. 
Exam~e 3.3.2 ( continued) We first compute the Radon-Nikodym deriva
tive of P with respect to P: 

P(HH) 9 
Z(HH) = P(HH) = 16' 

P(TH) 9 

P(HT) 9 
Z(HT) = P(HT) = 8' 

P(TT) 9 
Z(TH) = P(TH) = 8' Z(TT) = P(TT) = 4· 

To simplify matters, we use subscripts to denote the different values of the 
state price density (': 

Z(HH) 9 
(1 = ({HH) = (1 +r)2 = 25' 

Z(HT) 18 
(2 =((HT)= (1 +r)2 = 25' 

Z(TH) 18 
(3 = ((TH) = (1 + r)2 = 25' 

Z(TT) 36 
( 4 = ((TT) = (1 + r)2 = 25· 

We also use the notation 

Finally, we denote 

4 2 
Pt= P(HH) = 9, P2 = P(HT) = 9, 

2 1 
Pa= P(TH) = 9, p4 = P(TT) = 9. 

x1 = X2(HH), x2 = X2(HT), 
X3 = X2(T H), X4 = X2(TT). 

With these notations, Problem 3.3.3 may be written as 

Find a vector (x1, X2, X3, x4) that maximizes E!.=t Pml.T(xm) subject to 
E!.=1Pm(mXm = Xo. 

Filling in the numbers and using the fact that the utility function in ques
tion is the logarithm, we rewrite this as 

Find a vector (x1,x2,X3,X4) that maximizes 
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subject to 

4 9 2 18 2 18 1 36 
- • -X1 + - • -X2 + - • -X3 + - • -X4 = 4 9 25 9 25 9 25 9 25 • (3.3.21) 

The Lagrangian for this problem is 

The Lagrange multiplier equations are 

~L= ~ (__!_-_x~) =0, 
8x1 9 Xt 25 

which imply 
25 25 25 25 

Xt = 9,\' X2 = 18.;\ ' X3 = 18,\' X4 = 36,\. 

We solve for ¼ by substituting these formulas into (3.3.21): 

4 2 2 1 
9,\ + 9,\ + 9,\ + 9,\ = 4, 

which shows that ¼ = 4. We conclude that the optimal wealth at time two is 

50 
X2(HT) = X2 = 9' 

25 
X2(TT) = X4 = g· 

This agrees with formula (3.3.15). We can now compute the optimal portfolio 
process L10 , L11(H), and L11(T) as we did following that formula. □ 

In general, the solution of Problem 3.3.3 follows along the lines of the 
previous example. It is complicated by the fact that both the actual and 
risk-neutral probability measures appear in the problem for~ulation. Con
sequently, we introduce the Radon-Nikodym derivative Z of P with respect 
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to P to rewrite (3.3.19) without reference to the risk-neutral measure. This 
constraint becomes 

(3.3.19)' 

We can take this one step further by recalling the state price density ( = 
(l+~)N, in terms of which (3.3.19) can be written as 

(3.3.19)" 

In an N-period model, there are /1.f = 2N possible coin toss sequences w. 
Let us list them, labeling them 

I 2 M w,w, ... ,w. 

We use superscripts to indicate that wm is a full sequence of coin tosses, not 
the mth coin toss of some sequence. Let us define (m = ((wm), Pm= P(wm), 
and Xm = XN(wm). Then Problem 3.3.3 can be reformulated as follows. 

Problem 3.3.5. Given X0 , find a vector (x1, x2, ... , XM) that maximizes 

subject to 
M 

L PmXm(m = Xo. 
m=l 

The Lagrangian for Problem 3.3.5 is 

L = j; PmU(xm) - A (j; PmXm(m - Xo) , 

and the Lagrange multiplier equations are 

£lo L=pmU'(xm)-Apm(m=O, m=l,2, ... ,M. 
vXm 

These equations reduce to 

U'(xm) = A(m, m = 1, 2, ... , M. 

Recalling how Xm and (m were defined, we rewrite this as 

'( ) AZ 
U XN = (1 + r)N. 

(3.3.22) 

(3.3.23) 

(3.3.24) 

At this point, we need to invert the function U'. Since U is strictly concave 
everywhere it is finite, its derivative is decreasing and so has an inverse func
tion, which we call J. For example, if U(x) = lnx, then U'(x) = ¼-Setting 
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y = U'(x) = ¼, we solve for x = !, and this determines the inverse function 
I(y} = !· After determining this inverse function, whatever it is, we invert 
(3.3.24) to obtain 

(3.3.25} 

This gives a formula for the optimal XN in tern1s of the 1nultiplier A. We solve 
for the multiplier A by substituting XN into (3.3.19)': 

(3.3.26) 

After solving this equation for A, we substitute A into (3.3.25) to obtain XN, 
and then we use the algorith1n in Theorem 1.2.2 of Chapter 1 to find the 
optimal portfolio process Llo, Ll1, ... , LlN-t• All these steps were carried out 
in Example 3.3.2 (continued). 

We summarize this discussion with a theore1n. 

Theorem 3.3.6. Tlte solution of Problem 3 .. 1.1 can be found by first solving 
equation {9.3.26) for A, then computing XN by (9.3.25), and finally using 
XN in the algorithm of Theon~rn 1.2.2 of Chapter 1 to determine the optimal 
portfolio process Llo. Ll1, ... , LlN-1 and corresponding portfolio value process 
X 1, X 2, ... , X N. The function I appearing in ( 3. 3. 26) is the functional inverse 
of the derivative U' of the utility function U in Problem 9.3.1; i.e., x = l(y) 
if and only if y = U'(x). 

3.4 Summary 

This chapter details the methodology for changing from the actual probability 
measure to the risk-neutral probability measure in a binomial model and, 
more generally, the methodology for changing from one probability measure to 
another in a finite probability model. The key quantity is the Radon-Nikodym 
derivative -P(w) 

Z(w) = JP(w), (3.1.1) 

which in a finite probability model is just the quotient of the two probability 
measures. The Radon-Nikodym derivative is a strictly positive random vari
able with EZ = 1. The expectations of a random variable Y under the two 
probability measures are related by the formula 

EY = E(ZY]. (3.1.2) 

In the binomial model with actual probabilities p and q and risk-neutral 
probabilities f> and q for head and tail, respectively, in addition to the Radon
Nikodym derivative mndom variable 



3.4 Summary 81 

( .u:-Wt ... W N P q m>( ) (-) #H(w1 ... WN) (-) #T(w1 ... WN) 

z Wt ••• w N) = P( ) = - - ' 
W1° 00 WN P q 

(3.1.8) 

we have a Radon-Nikodym derivative process 

Zn = EnZ, n = 0, 1, ... , N. (3.2.1) 

This process is also given by the formula 

(3.2.4) 

In other words, Zn(w1 ... Wn) is the ratio of the risk-neutral probability of 
the partial path of n tosses to the actual probability of the same partial 
path. When the random variable Y depends only on the first n tosses, where 
0 < n < N, equation (3.1.2} takes the simpler form 

(3.2.3) 

This shows that when Y is determined by the outcome of the first n coin 
tosses, then we need only consider the ratio of the risk-n~utral probability to 
the actual probability for these n tosses in order to relate P and JP expectations 
ofY. 

Conditional expectations under JP and JP are related as follows. If Y depends 
only on the first m coin tosses and O < n < m < N, then 

(3.2.5) 

When computing the conditional expectation En Y, we imagine we have seen 
the coin tosses w1 ... Wn and we have assumed that Y does not depend on the 
tosses Wm+ 1 ... w N. The coin tosses Wn+ 1 ... Wm, which we have not seen and 
affect the value of Y, have P-probability p#H(Wn+i•·•Wm)q#T(wn+l•·•Wm} and P
probability p#H(Wn+i .. •Wm)q#T(Wn+i .. •Wm). The ratio of these two probabilities 
18 

~ and thus this quotient random variable is used to write the JP-conditional 
expectation in terms of the JP-conditional expectation in (3.2.5). Note in this 
regard that the right-hand side of (3.2.5) may also be written as En [ im Y] 
since Zn depends only on the first n coin tosses. " 

The Radon-Nikodym derivative random variable Zin the binomial model 
gives rise to the state price density 

Z(w) 
((w) = (1 + r)N. 
























































































































































































































